RT Journal Article SR Electronic T1 FAM46A mutations are responsible for autosomal recessive osteogenesis imperfecta JF Journal of Medical Genetics JO J Med Genet FD BMJ Publishing Group Ltd SP jmedgenet-2017-104999 DO 10.1136/jmedgenet-2017-104999 A1 Mathilde Doyard A1 Séverine Bacrot A1 Céline Huber A1 Maja Di Rocco A1 Alice Goldenberg A1 Mona S Aglan A1 Perrine Brunelle A1 Samia Temtamy A1 Caroline Michot A1 Ghada A Otaify A1 Coralie Haudry A1 Mireille Castanet A1 Julien Leroux A1 Jean-Paul Bonnefont A1 Arnold Munnich A1 Geneviève Baujat A1 Pablo Lapunzina A1 Sophie Monnot A1 Victor L Ruiz-Perez A1 Valérie Cormier-Daire YR 2018 UL http://jmg.bmj.com/content/early/2018/01/21/jmedgenet-2017-104999.abstract AB Background Stüve-Wiedemann syndrome (SWS) is characterised by bowing of the lower limbs, respiratory distress and hyperthermia that are often responsible for early death. Survivors develop progressive scoliosis and spontaneous fractures. We previously identified LIFR mutations in most SWS cases, but absence of LIFR pathogenic changes in five patients led us to perform exome sequencing and to identify homozygosity for a FAM46A mutation in one case [p.Ser205Tyrfs*13]. The follow-up of this case supported a final diagnosis of osteogenesis imperfecta (OI), based on vertebral collapses and blue sclerae.Methods and results This prompted us to screen FAM46A in 25 OI patients with no known mutations.We identified a homozygous deleterious variant in FAM46A in two affected sibs with typical OI [p.His127Arg]. Another homozygous variant, [p.Asp231Gly], also classed as deleterious, was detected in a patient with type III OI of consanguineous parents using homozygosity mapping and exome sequencing.FAM46A is a member of the superfamily of nucleotidyltransferase fold proteins but its exact function is presently unknown. Nevertheless, there are lines of evidence pointing to a relevant role of FAM46A in bone development. By RT-PCR analysis, we detected specific expression of FAM46A in human osteoblasts andinterestingly, a nonsense mutation in Fam46a has been recently identified in an ENU-derived (N-ethyl-N-nitrosourea) mouse model characterised by decreased body length, limb, rib, pelvis, and skull deformities and reduced cortical thickness in long bones.Conclusion We conclude that FAM46A mutations are responsible for a severe form of OI with congenital bowing of the lower limbs and suggest screening this gene in unexplained OI forms.