Increased recombination adjacent to the Huntington disease-linked D4S10 marker

Genomics. 1991 Jan;9(1):104-12. doi: 10.1016/0888-7543(91)90226-5.

Abstract

Huntington disease (HD) is caused by a genetic defect distal to the anonymous DNA marker D4S10 in the terminal cytogenetic subband of the short arm of chromosome 4 (4p16.3). The effort to identify new markers linked to HD has concentrated on the use of somatic cell hybrid panels that split 4p16.3 into proximal and distal portions. Here we report two new polymorphic markers in the proximal portion of 4p16.3, distal to D4S10. Both loci, D4S126 and D4S127, are defined by cosmids isolated from a library enriched for sequences in the 4pter-4p15.1 region. Physical mapping by pulsed-field gel electrophoresis places D4S126 200 kb telomeric to D4S10, while D4S127 is located near the more distal marker D4S95. Typing of a reference pedigree for D4S126 and D4S127 and for the recently described VNTR marker D4S125 has firmly placed these loci on the existing linkage map of 4p16.3. This genetic analysis has revealed that the region immediately distal to D4S10 shows a dramatically higher rate of recombination than would be expected based on its physical size. D4S10-D4S126-D4S125 span 3.5 cM, but only 300-400 kb of DNA. Consequently, this small region accounts for most of the reported genetic distance between D4S10 and HD. By contrast, it was not possible to connect D4S127 to D4S125 by physical mapping, although they are only 0.3 cM apart. A more detailed analysis of recombination sites within the immediate vicinity of D4S10 could potentially reveal the molecular basis for this phenomenon; however, it is clear that the rate of recombination is not continuously increased with progress toward the telomere of 4p.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Line
  • Chromosome Mapping
  • Chromosomes, Human, Pair 4*
  • Cosmids
  • Cricetinae
  • Genetic Linkage*
  • Genetic Markers*
  • Humans
  • Huntington Disease / genetics*
  • Hybrid Cells
  • Polymorphism, Restriction Fragment Length
  • Recombination, Genetic*

Substances

  • Genetic Markers