Structure-function analysis of CYP27B1 and CYP27A1. Studies on mutants from patients with vitamin D-dependent rickets type I (VDDR-I) and cerebrotendinous xanthomatosis (CTX)

Eur J Biochem. 2001 Dec;268(24):6607-15. doi: 10.1046/j.0014-2956.2001.02615.x.

Abstract

We have determined eight types of missense mutants of CYP27B1 from Japanese vitamin D-dependent rickets type I (VDDR-I) patients [Kitanaka, S., Takeyama, K., Murayama, A., Sato, T., Okumura, K., Nogami, M., Hasegawa, Y., Niimi, H., Yanagisawa, J., Tanaka, T. & Kato, S. (1998) New England J. Med., 338, 653-661 and Kitanaka, S., Murayama, A., Sakaki, T., Inouye, K., Seino, Y., Fukumoto, S., Shima, M., Yukizane, S., Takayanagi, M., Niimi, H., Takeyama, K. & Kato, S. (1999) J. Clin. Endocrine Metab., 84, 4111-4117]. None of the CYP27B1 mutants showed 1alpha-hydroxylase activity towards 25-hydroxyvitamin D3. Thus, it was assumed that the mutated amino-acid residues play important roles in the 1alpha-hydroxylase activity, such as substrate binding, activation of molecular oxygen, interaction with adrenodoxin, and folding of the cytochrome P450 structure. To examine our hypothesis, we generated various mutants of CYP27B1 and studied their enzymatic properties. In addition, the corresponding mutations were introduced to CYP27A1, which belongs to the same family as CYP27B1. As CYP27A1 showed much higher expression level than CYP27B1 in Escherichia coli, further analysis including heme-binding and substrate-binding was performed with CYP27A1 in place of CYP27B1. Western blot analysis, spectral analysis including reduced CO-difference spectra and substrate-induced difference spectra, and enzymatic analysis of the mutant CYP27A1 gave information on the structure-function relationships of both CYP27A1 and CYP27B1. Although the sequence alignment suggested that Arg107, Gly125, and Pro497 of CYP27B1 might be involved in substrate binding, the experimental data strongly suggested that mutations of these amino-acid residues destroyed the tertiary structure of the substrate-heme pocket. It was also suggested that Arg389 and Arg453 of CYP27B1 were involved in heme-propionate binding, and Asp164 stabilized the four-helix bundle consisting of D, E, I and J helices, possibly by forming a salt bridge. Thr321 was found to be responsible for the activation of molecular oxygen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase / chemistry*
  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase / genetics
  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase / metabolism*
  • Amino Acid Sequence
  • Cholestanetriol 26-Monooxygenase
  • Cytochrome P-450 Enzyme System / chemistry*
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism*
  • Humans
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Rickets / enzymology*
  • Rickets / etiology
  • Sequence Homology, Amino Acid
  • Steroid Hydroxylases / chemistry*
  • Steroid Hydroxylases / genetics
  • Steroid Hydroxylases / metabolism*
  • Structure-Activity Relationship
  • Vitamin D Deficiency / complications
  • Vitamin D Deficiency / enzymology*
  • Xanthomatosis, Cerebrotendinous / enzymology*

Substances

  • Cytochrome P-450 Enzyme System
  • Steroid Hydroxylases
  • CYP27A1 protein, human
  • Cholestanetriol 26-Monooxygenase
  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase