Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency

Abstract

Dyslexia is a common and complex developmental disorder manifested by unexpected difficulty in learning to read. Multiple different measures are used for diagnosis, and may reflect different biological pathways related to the disorder. Impaired phonological decoding (translation of written words without meaning cues into spoken words) is thought to be a core deficit. We present a genome scan of two continuous measures of phonological decoding ability: phonemic decoding efficiency (PDE) and word attack (WA). PDE measures both accuracy and speed of phonological decoding, whereas WA measures accuracy alone. Multipoint variance component linkage analyses (VC) and Markov chain Monte-Carlo (MCMC) multipoint joint linkage and segregation analyses were performed on 108 families. A strong signal was observed on chromosome 2 for PDE using both VC (LOD=2.65) and MCMC methods (intensity ratio (IR)=32.1). The IR is an estimate of the ratio of the posterior to prior probability of linkage in MCMC analysis. The chromosome 2 signal was not seen for WA. More detailed mapping with additional markers provided statistically significant evidence for linkage of PDE to chromosome 2, with VC-LOD=3.0 and IR=59.6 at D2S1399. Parametric analyses of PDE, using a model obtained by complex segregation analysis, provided a multipoint maximum LOD=2.89. The consistency of results from three analytic approaches provides strong evidence for a locus on chromosome 2 that influences speed but not accuracy of phonological decoding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Shaywitz SE, Shaywitz BA, Fletcher JM, Escobar MD . Prevalence of reading disability in boys and girls. JAMA 1990; 264: 998–1002.

    Article  CAS  PubMed  Google Scholar 

  2. Katusic SK, Colligan RC, Barbaresi WJ, Schaid DJ, Jacobsen SJ . Incidence of reading disability in a population-based birth cohort, 1976–1982, Rochester, MN. Mayo Clin Proc 2001; 76: 1075–1077.

    Article  Google Scholar 

  3. Berninger V . Dyslexia, the invisible, treatable disorder: the story of Einstein's Ninja Turtles. Learning Disability Quart 2000; 23: 175–195.

    Article  Google Scholar 

  4. Berninger VW, Abbott RD, Thomson JB, Raskind WH . Language phenotype for reading and writing disability: a family approach. Sci Stud Reading 2001; 5: 59–106.

    Article  Google Scholar 

  5. Bruck M . Word recognition skills of adults with childhood diagnoses of dyslexia. Dev Psychol 1990; 26: 439–454.

    Article  Google Scholar 

  6. Bruck M . Persistence of dyslexics' phonological awareness deficits. Dev Psychol 1992; 5: 874–886.

    Article  Google Scholar 

  7. Bruck M . Word recognition and component phonological processing skills of adults with childhood diagnosis of dyslexia. Dev Rev 1993; 13: 258–268.

    Article  Google Scholar 

  8. Pennington B, Van Orden G, Smith S, Green P, Haith M . Phonological processing skills and deficits in adult dyslexics. Child Dev 1990; 61: 1753–1778.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson AM, Lesaux NK . Persistence of phonological processing deficits in college students with dyslexia who have age-appropriate reading skills. J Learning Disabilities 2001; 34: 394–400.

    Article  CAS  Google Scholar 

  10. Wagner R, Torgesen J . The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol Bull 1987; 101: 192–212.

    Article  Google Scholar 

  11. Pennington B . The Development of Psychopathology. Nature and Nurture. Guilford: New York, 2002.

    Google Scholar 

  12. Morris R, Stuebing K, Fletcher J, Shaywitz S, Lyon GR, Shakweiler D et al. Subtypes of reading disability: variability around a phonological core. J Educ Psychol 1998; 90: 347–373.

    Article  Google Scholar 

  13. Snowling MJ . From language to reading and dyslexia. Dyslexia 2001; 7: 37–46.

    Article  CAS  PubMed  Google Scholar 

  14. Stanovich KE, Siegel LS . Phenotypic performance profile of children with reading disabilities: a regression-based test of the phonological-core variable-difference model. J Educ Psychol 1994; 86: 24–53.

    Article  Google Scholar 

  15. Felton RH, Naylor CE, Wood FB . Neuropsychological profile of adult dyslexics. Brain Lang 1990; 39: 485–496.

    Article  CAS  PubMed  Google Scholar 

  16. Shaywitz SE, Fletcher JM, Holahan JM, Schneider AE, Marchione KE, Stuebing KK et al. Persistence of dyslexia: the Connecticut longitudinal study at adolescence. Pediatrics 1999; 104: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  17. Hatcher J, Snowling MJ, Griffiths YM . Cognitive assessment of dyslexic students in higher education. Br J Educ Psychol 2002; 72: 119–133.

    Article  PubMed  Google Scholar 

  18. Ramus F, Rosen SF, Dakin SC, Day BL, Castellote JM, White S et al. Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain 2003; 126: 841–865.

    Article  PubMed  Google Scholar 

  19. Fisher SE, DeFries JC . Developmental dyslexia: genetic dissection of a complex cognitive trait. Nat Neurosci 2002; 3: 767–780.

    Article  CAS  Google Scholar 

  20. Fagerheim T, Raeymaekers P, Tonnessen FE, Pedersen M, Tranebjaerg L, Lubs HA . A new gene (DYX3) for dyslexia is located on chromosome 2. J Med Genet 1999; 36: 664–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nopola-Hemmi J, Myllyluoma B, Haltia T, Taipale M, Ollikainen V, Ahonen T et al. A dominant gene for developmental dyslexia on chromosome 3. J Med Genet 2001; 38: 658–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pennington B, Gilger JW, Pauls D, Smith SA, Smith SD, DeFries JC . Evidence for a major gene transmission of developmental dyslexia. JAMA 1991; 266: 1527–1534.

    Article  CAS  PubMed  Google Scholar 

  23. Wijsman EM, Peterson D, Leutenegger A-L, Thomson JB, Goddard KAB, Hsu L et al. Segregation analysis of phenotypic components of learning disabilities, I. Nonword memory and digit span. Am J Hum Genet 2000; 67: 631–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chapman N, Raskind WH, Thomson J, Berninger VW, Wijsman EM . Segregration analysis of dyslexia phenotypes 2: phonological decoding and phonological efficiency. Am J Med Genet (Neuropsychol Genet) 2003; 121B: 60–70.

    Article  Google Scholar 

  25. Tzenova J, Kaplan BJ, Petryshen TL, Field LL . Confirmation of a dyslexia susceptibility locus on chromosome 1p34–p36 in a set of 100 Canadian families. Am J Med Genet (Neuropsychiatric Genet) 2004; 27B: 117–124.

    Article  Google Scholar 

  26. Grigorenko EL, Wood FB, Meyer MS, Pauls JED, Hart LA, Pauls DL . Linkage studies suggest a possible locus for developmental dyslexia on chromosome 1p. Am J Med Genet 2001; 105: 120–129.

    Article  CAS  PubMed  Google Scholar 

  27. Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, Cardon LR et al. Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat Genet 2002; 30: 86–91.

    Article  CAS  PubMed  Google Scholar 

  28. Petryshen TL, Kaplan BJ, Hughes ML, Tzenova J, Field LL . Supportive evidence for the DYX3 dyslexia susceptibililty gene in Canadian families. J Med Genet 2002; 39: 125–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaminen N, Hannula-Jouppi K, Kestila M, Lahermo P, Muller K, Kaaranen M et al. A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. J Med Genet 2003; 40: 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC . Quantitative trait locus for reading disability on chromosome 6. Science 1994; 266: 276–279.

    Article  CAS  PubMed  Google Scholar 

  31. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC . Quantitative trait locus for reading disability: correction [letter]. Science 1995; 268: 1553.

    Article  CAS  PubMed  Google Scholar 

  32. Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A et al. Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 1997; 60: 27–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Grigorenko EL, Wood FB, Meyer MS, Pauls DL . Chromosome 6p influences on different dyslexia-related cognitive processes: further confirmation. Am J Hum Genet 2000; 66: 715–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM et al. Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am J Hum Genet 1999; 64: 157–164.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ et al. A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet 1999; 64: 146–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Petryshen TL, Kaplan BJ, Fu Liu M, de French NS, Tobias R, Hughes M et al. Evidence for a susceptibility locus on chromosome 6q influencing phonological coding dyslexia. Am J Med Genet 2001; 105: 507–517.

    Article  CAS  PubMed  Google Scholar 

  37. Hsiung G-YR, Kaplan BJ, Petryshen TL, Lu S, Field LL . A dyslexia susceptibility locus (DYX7) linked to dopamine D4 receptor (DRD4) region on chromosome 11p15.5. Am J Med Genet (Neuropsychiatr Genet) 2004; 125B: 112–119.

    Article  Google Scholar 

  38. Smith SD, Kimberling WJ, Pennington BF, Lubs HA . Specific reading disability: identification of an inherited form through linkage analysis. Science 1983; 219: 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  39. Smith SD, Pennington BF, Kimberling WJ, Ing PS . Familial dyslexia: use of genetic linkage data to define subtypes. J Am Acad Child Adolesc Psychiatry 1990; 29: 204–213.

    Article  CAS  PubMed  Google Scholar 

  40. Schulte-Körne G, Grimm T, Nöthen MM, Müller-Myshok B, Cichon S, Vogt IR et al. Evidence for linkage of spelling disability to chromosome 15. Am J Hum Genet 1998; 63: 279–282.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Morris DW, Robinson L, Turic D, Duke M, Webb V, Milham C et al. Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Hum Mol Genet 2000; 9: 843–848.

    Article  CAS  PubMed  Google Scholar 

  42. Chapman NH, Igo RP, Thomson JB, Matsushita M, Brkanac Z, Holzman T et al. Linkage analyses of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q. Am J Med Genet (Neuropsychol Genet) 2004; 131B: 67–75.

    Article  Google Scholar 

  43. Torgesen J, Wagner R, Reshotte C . Test of Word Reading Efficiency (TOWRE). Pro-Ed: Austin, TX, 1999.

    Google Scholar 

  44. Woodcock R . Woodcock Reading Mastery Test—Revised (WRMT-R). American Guidance Service: Circle Pines, MN, 1987.

    Google Scholar 

  45. Raskind W, Hsu L, Berninger V, Thomson J, Wijsman E . Familial aggregation of dyslexia phenotypes. Behavr Genet 2000; 30: 385–395.

    Article  CAS  Google Scholar 

  46. Wechsler D . Wechsler Intelligence Scale for Children—Third Edition (WISC-III). The Psychological Corporation: San Antonio, TX, 1992.

    Google Scholar 

  47. Wagner R, Torgesen J, Rashotte CA . Comprehensive Test of Phonological Processing (CTOPP). Pro-Ed: Austin, TX, 1999.

    Google Scholar 

  48. Wechsler D . Wechsler Individual Achievement Test (WIAT). The Psychological Corporation: San Antonio, TX, 1992.

    Google Scholar 

  49. Wechsler Individual Achievement Test—Second Edition. Psychological Corporation: New York, NY, 2002.

  50. Wechsler D . Wechsler Adult Intelligence Scale—Revised (WAIS-R). The Psychological Corporation: San Antonio, TX, 1981.

    Google Scholar 

  51. Geschwind DH, Boone KB, Miller BL, Swerdloff RS . Neurobehavioral phenotype of Klinefelter syndrome. Ment Retard Dev Disabil Res Rev 2000; 6: 107–116.

    Article  CAS  PubMed  Google Scholar 

  52. Boone KB, Swerdloff RS, Miller BL, Geschwind DH, Razani J, Lee Q et al. Neuropsychological profiles of adults with Klinefelter syndrome. J Int Neuropsychol Soc 2001; 7: 446–456.

    Article  CAS  PubMed  Google Scholar 

  53. Raskind WH, Conrad EU, Chansky H, Matsushita M . Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am J Hum Genet 1995; 56: 1132–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B et al. A high-resolution recombination map of the human genome. Nat Genet 2002; 31: 241–247.

    Article  CAS  PubMed  Google Scholar 

  55. Cottingham R, Idury RM, Schaffer AA . Faster sequential genetic linkage computations. Am J Hum Genet 1993; 53: 252–263.

    PubMed  PubMed Central  Google Scholar 

  56. Amos CI . Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 1994; 54: 535–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM . MCMC segregation and linkage analysis. Genet Epidemiol 1997; 14: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  58. Almasy L, Borecki I . Exploring genetic analysis of complex traits through the paradigm of alcohol dependence: summary of GAW11 contributions. Genet Epidemiol 1999; 17 (Suppl 1): S1–S24.

    Article  PubMed  Google Scholar 

  59. Shmulewitz D, Heath SC . Genome scans for Q1 and Q2 on general population replicates using Loki. Genet Epidemiol 2001; 21 (Suppl 1): S686–S691.

    Article  PubMed  Google Scholar 

  60. Williams J, Duggirala R, Blangero J . Statistical properties of a variance components method for quantitatitve trait linkage analysis in nuclear families and extended pedigrees. Genet Epidemiol 1997; 14: 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  61. Amos C, de Andrade M . Genetic linkage methods for quantitative traits. Stat Methods Med Res 2001; 10: 3–25.

    Article  CAS  PubMed  Google Scholar 

  62. Allison D, Neale M, Zannolli R, Schork N, Amos C, Blangero J . Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am J Hum Genet 1999; 65: 531–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blangero J, Williams J, Almasy L . Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol 2000; 19: S8–S14.

    Article  PubMed  Google Scholar 

  64. Forrest W, Feingold E . Composite statistics for QTL mapping with moderately discordant sibling pairs. Am J Hum Genet 2000; 66: 1642–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Epstein MP . Comment on ‘Ascertainment adjustment in complex diseases’. Genet Epidemiol 2002; 23: 209–213.

    Article  PubMed  Google Scholar 

  66. Glidden D, Liang K-Y . Ascertainment adjustment in complex diseases. Genet Epidemiol 2002; 23: 201–208.

    Article  PubMed  Google Scholar 

  67. Daw EW, Heath SC, Wijsman EM . Multipoint oligogenic analysis of age-at-onset data with applications to Alzheimer's disease pedigrees. Am J Hum Genet 1999; 64: 839–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wijsman EM, Yu D . Joint oligogenic segregation and linkage analysis using Bayesian Markov chain Monte Carlo Methods. Mol Biotechnol 2004; 28: 205–226.

    Article  CAS  PubMed  Google Scholar 

  69. Gelman A, Carlin J, Stern H, Rubin D . Bayesian Data Analysis, 2nd edn. Chapman & Hall: New York, 2004.

    Google Scholar 

  70. Williamson JA, Amos CI . Guess LOD approach: sufficient conditions for robustness. Genet Epidemiol 1995; 12: 163–176.

    Article  CAS  PubMed  Google Scholar 

  71. Ott J . Analysis of Human Genetic Linkage, 3rd edn. Johns Hopkins University Press: Baltimore, 1999.

    Google Scholar 

  72. Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J . Effects of misspecifying genetic parameters in lod score analysis. Biometrics 1986; 42: 393–399.

    Article  CAS  PubMed  Google Scholar 

  73. Greenberg D, Abreu P, Hodge S . The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 1998; 63: 870–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jarvik G . Complex segregation analysis: uses and limitations. Am J Hum Genet 1998; 63: 942–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Risch N, Giuffra L . Model misspecification and multipoint linkage analysis. Hum Hered 1992; 42: 77–92.

    Article  CAS  PubMed  Google Scholar 

  76. Bonney G . Regressive logistic models for familial disease and other binary traits. Biometrics 1986; 42: 611–625.

    Article  CAS  PubMed  Google Scholar 

  77. S.A.G.E. Statistical analysis for genetic epidemiology computer program package available from the department of Epidemiology and Biostatistics. Rammelkamp Center for Education and Research. MetroHealth Campus, Case Western Reserve University: Cleveland, 1997.

  78. Abecasis GR, Cherny SS, Cookson WO, Cardon LR . Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  79. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Self SG, Liang K-Y . Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 1987; 82: 605–610.

    Article  Google Scholar 

  81. Heath SC . Markov Chain Monte Carlo Segregation and linkage analysis for oligogenic models. Am J Hum Genet 1997; 61: 748–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wijsman EM . Joint segregation and linkage analysis using Markov Chain Monte Carlo methods. In: Camp N, Cox A (eds). Quantitative Trait Loci: Methods and Protocols, Vol 195. Humana Press: Totowa 2002, pp 139–161.

    Chapter  Google Scholar 

  83. Ott J . Analysis of Human Genetic Linkage. Johns Hopkins University Press: Baltimore, 1991.

    Google Scholar 

  84. Wimmer H . The nonword reading deficit in developmental dyslexia: evidence from children learning to read German. J Exp Child Psychol 1996; 61: 80–90.

    Article  CAS  PubMed  Google Scholar 

  85. Zoccolotti P, DeLuca M, DiPace E, Judica A, Orlandi M, Spinelli D . Markers of developmental surface dyslexia in a language (Italian) with high grapheme-phoneme correspondence. App Psycholing 1999; 20: 191–216.

    Google Scholar 

  86. Leinonen S Mueller K, Leppaenen PHT, Aro M, Ahonen T, Lyytinen H . Heterogeneity in adult dyslexic readers: relating processing skills to the speed and accuracy of oral text reading. Read Writ 2001; 14: 265–296.

    Article  Google Scholar 

  87. Landerl K . Word recognition deficits in German: more evidence from a representative sample. Dyslexia 2001; 7: 183–196.

    Article  CAS  PubMed  Google Scholar 

  88. Laasonen M, Lahti-Nuuttila P, Virsu V . Developmentally impaired processing speed decreases more than normally with age. Neuroreport 2002; 13: 1111–1113.

    Article  PubMed  Google Scholar 

  89. Berninger VW, Abbott RD, Thomson J, Wagner R, Swanson HL, Raskind W . Modeling developmental dyslexia subphenotypes in children and adults: understanding phonological core deficits within a working memory architecture, submitted.

  90. Marlow AJ, Fisher SE, Francks C, MacPhie IL, Cherny SS, Richardson AJ et al. Use of multivariate linkage analysis for dissection of a complex cognitive trait. Am J Hum Genet 2003; 72: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the expert help of Department of Educational Psychology graduate students Sylvia Abbott, Allison Brooks, Ana Rueda Brown, Rebecca Brooksher, Julie Busse, Kristina Byrd, Belle Chenault, Gerry Curtin, Kate Eschen, Julie Gibson, Sarah Hellewege, Diana Hoffer, Renee Hartman, Stephanie King, Linelle Milatchov, Stacy Ogier, Tanya Prather, James Rodriguez, and Jared Taylor in administering the test battery. John Wolff provided technical help in processing all the blood and DNA samples and Hiep Nguyen provided computer support. We thank Richard Wagner and Joseph Torgesen for allowing us to use the prepublication measures of the CTOPP. We are grateful to the families for their willingness to devote the time necessary to participate in these studies. These studies were supported by grant P50 33812 from the National Institute of Child Health and Development. Some of the results of this article were obtained by use of the program SAGE, which is supported by a US Public Health Service Grant (1 P41 RR03655) from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W H Raskind.

Additional information

Electronic database information

URLs for data and programs in this article are as follows:

Loki version 2.4.5: http://www.stat.washington.edu/thompson/Genepi/Loki.shtml

Marshfield maps: http://research.marshfieldclinic.org/genetics

SOLAR 2.1: http://www.sfbr.org/sfbr/public/software/solar/

S.A.G.E.: http://www.statsol.ie/sage/sage.htm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raskind, W., Igo, R., Chapman, N. et al. A genome scan in multigenerational families with dyslexia: Identification of a novel locus on chromosome 2q that contributes to phonological decoding efficiency. Mol Psychiatry 10, 699–711 (2005). https://doi.org/10.1038/sj.mp.4001657

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001657

Keywords

This article is cited by

Search

Quick links