Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The vacuolar (H+)-ATPases — nature's most versatile proton pumps

Key Points

  • The V-ATPases are composed of a peripheral domain (V1), which is responsible for ATP hydrolysis, and an integral domain (V0), which is responsible for proton translocation. Electron microscopy has shown the existence of multiple stalks that connect V1 and V0.

  • V-ATPases have an important role in various membrane-transport processes, including both endocytosis and intracellular transport. Moreover, the integral V0 domain has recently been proposed to have a direct role in membrane fusion.

  • V-ATPases in the plasma membrane of specialized cells function in processes such as renal acidification and bone resorption. Several genetic diseases have now been traced to defects in genes that encode V-ATPase subunits, including renal tubular acidosis and osteopetrosis.

  • The V-ATPases resemble the F-ATPases, which normally function in ATP synthesis, and are believed to operate through a rotary mechanism. Information on subunit interactions and topology and the function of individual residues in activity has begun to emerge from studies using site-directed mutagenesis and covalent modification.

  • The yeast V-ATPase requires a unique set of polypeptides for its assembly in the endoplasmic reticulum. Targeting of the V-ATPase seems to be controlled by signals that are located in the 100-kDa a subunit, although interaction with other cellular proteins, such as PDZ proteins, might be important.

  • Several mechanisms have been proposed to regulate V-ATPase activity, including reversible dissociation, disulphide-bond formation and changes in coupling efficiency. A new ubiquitin-ligase component has recently been shown to have a role in regulated assembly of the V-ATPase.

Abstract

The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural comparison of the V- and F-ATPases.
Figure 2: Function of V-ATPases in membrane transport.
Figure 3: Function of plasma membrane V-ATPases.
Figure 4: Electron microscopy of the V0 and V1V0 complexes.
Figure 5: Models of catalytic and noncatalytic nucleotide-binding sites on the V-ATPases.
Figure 6: Structure and function of the V0 domain.
Figure 7: Regulation of vacuolar acidification.

Similar content being viewed by others

References

  1. Forgac, M. Structure and properties of the vacuolar (H+)-ATPases. J. Biol. Chem. 274, 12951–12954 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Stevens, T. H. & Forgac, M. Structure, function and regulation of the vacuolar (H+)-ATPase. Annu. Rev. Cell Dev. Biol. 13, 779–808 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Bowman, E. J. & Bowman, B. J. Cellular role of the V-ATPases in Neurospora crassa. J. Exp. Biol. 203, 97–106 (2000).

    CAS  PubMed  Google Scholar 

  4. Brown, D. & Breton, S. V-ATPase dependent lumenal acidification in the kidney collecting duct and the epididymis/vas deferens. J. Exp. Biol. 203, 137–145 (2000).

    CAS  PubMed  Google Scholar 

  5. Li, Y. P., Chen, W., Liang, Y., Li, E. & Stashenko, P. Atp6i-deficient mice exhibit severe osteopetrosis due to loss of osteoclast-mediated extracellular acidification. Nature Genet. 23, 447–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Brisseau, G. F. et al. IL-1 increases V-ATPase activity in murine peritoneal macrophages. J. Biol. Chem. 271, 2005–2011 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Smith, A. N. et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kDa subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nature Genet. 26, 71–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Frattini, A. et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nature Genet. 25, 343–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Karet, F. E. et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nature Genet. 21, 84–90 (1999).The first human disease that was linked to a defect in the V-ATPase.

    Article  CAS  PubMed  Google Scholar 

  10. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, X., Yu, H., Liu, S. H., Brodsky, F. M. & Peterlin, B. M. Interactions between HIV1 Nef and vacuolar ATPase facilitate the internalization of CD4. Immunity 8, 647–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Morano, K. A. & Klionsky, D. J. Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J. Cell Sci. 107, 2813–2824 (1994).

    CAS  PubMed  Google Scholar 

  13. Gu, F. & Gruenberg, J. ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J. Biol. Chem. 275, 8154–8160 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Han, X., Bushweller, J. H., Cafiso, D. S. & Tamm, L. K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nature Struct. Biol. 8, 715–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Ungermann, C., Wickner, W. & Xu, Z. Vacuole acidification is required for trans-SNARE pairing, LMA1 release and homotyic fusion. Proc. Natl Acad. Sci. USA. 96, 11194–11199 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nanda, A. et al. Activation of proton pumping in human neutrophils occurs by exocytosis of vesicles bearing vacuolar-type H+-ATPases. J. Biol. Chem. 271, 15963–15970 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y. & Futai, M. Three subunit a isoforms of mouse vacuolar (H+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J. Biol. Chem. 275, 8760–8765 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Zaguilan, R., Lynch, R., Martinez, G. & Gillies, R. Vacuolar-type H+-ATPases are functionally expressed in plasma membranes of human tumor cells. Am. J. Physiol. 265, C1015–C1029 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Wieczorek, H. et al. Structure and regulation of the insect plasma membrane V-ATPase. J. Exp. Biol. 203, 127–135 (2000).

    CAS  PubMed  Google Scholar 

  20. Zhang, J. W., Parra, K. J., Liu, J. & Kane, P. M. Characterization of a temperature-sensitive yeast vacuolar ATPase mutant with defects in actin distribution and bud morphology. J. Biol. Chem. 273, 18470–18480 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Miura, K. et al. The SOS1–Rac1 signalling: possible involvement of a vacuolar H+-ATPase E subunit. J. Biol. Chem. 276, 46276–46283 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bowman, E. J., Kendle, R. & Bowman, B. J. Disruption of vma-1, the gene encoding the catalytic subunit of the V-ATPase, causes severe morphological changes in Neurospora crassa. J. Biol. Chem. 275, 167–176 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Andresson, T., Sparkowski, J., Goldstein, D. J. & Schlegel, R. Vacuolar H-ATPase mutants transform cells and define a binding site for the papilloma virus E5 oncoprotein. J. Biol. Chem. 270, 6830–6837 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Skinner, M. A. & Wildeman, A. G. β1 integrin binds the 16-kDa subunit of V-ATPase at a site important for human papillomavirus E5 and PDGF-signalling. J. Biol. Chem. 274, 23119–23127 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schapiro, F. et al. Golgi alkalinization by papillomavirus E5 oncoprotein. J. Cell Biol. 148, 305–315 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, X., Malhotra, R. & Guidotti, G. Regulation of yeast ecto-apyrase ynd1p by activating subunit Vma13p of the vacuolar H+-ATPase. J. Biol. Chem. 275, 35592–35599 (2000).

    Article  Google Scholar 

  28. Cross, R. L. The rotary binding change mechanism of ATP synthases. Biochim. Biophys. Acta 1458, 270–275 (2000).A concise summary of the rotary model for the mechanism of the F-ATPases.

    Article  CAS  PubMed  Google Scholar 

  29. Weber, J. & Senior, A. E. ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim. Biophys. Acta 1458, 300–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fillingame, R. H., Jiang, W. & Dmitriev, O. Y. Coupling H+ transport to rotary catalysis in F-type ATP synthases. J. Exp. Biol. 203, 9–17 (2000).

    CAS  PubMed  Google Scholar 

  31. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994).The first high-resolution structure of the F 1 domain of the related ATP synthases.

    Article  CAS  PubMed  Google Scholar 

  32. Stock, D., Lelie, A. G. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bianchet, M. A., Hullihen, J., Pedersen, P. L. & Amzel, L. M. The 2.8 Å structure of the rat liver F1-ATPase. Proc. Natl Acad. Sci. USA 95, 11065–11070 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Rodgers, A. J. & Capaldi, R. A. The second stalk composed of the β- and δ-subunits connects F0 to F1 via an α-subunit in the E. coli ATP synthase. J. Biol. Chem. 273, 29406–29410 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, W., Hermolin, J. & Fillingame, R. H. The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc. Natl Acad. Sci. USA. 98, 4966–4971 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Vik, S. B., Long, J. C., Wada, T. & Zhang, D. A model for the structure of subunit a of the E. coli ATP synthase and its role in proton translocation. Biochim. Biophys. Acta 1458, 457–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Cain, B. D. Mutagenic analysis of F0 stator subunits. J Bioenerg Biomembr 32, 365–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Sambongi, Y. et al. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation. Science 286, 1722–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Hutcheon, M. L., Duncan, T. M., Ngai, H. & Cross, R. L. Energy-driven subunit rotation at the interface between subunit a and the c oligomer in the F0 sector of E. coli ATP synthase. Proc. Natl Acad. Sci. USA 98, 8519–8524 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Junge, W. Inter-subunit rotation and elastic power transmission in F0F1-ATPase. FEBS Lett. 504, 152–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Wilkens, S., Vasilyeva, E. & Forgac, M. Structure of the vacuolar ATPase by electron microscopy. J. Biol. Chem. 274, 31804–31810 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Boekema, E. J., Ubbink-Kok, T., Lolkema, J. S., Brisson, A. & Konings, W. N. Visualization of a peripheral stalk in V-type ATPase: evidence for the stator structure essential to rotational catalysis. Proc. Natl Acad. Sci. USA 94, 14291–14293 (1997).This provided the first evidence for multiple stalks that connect the V 1 and V 0 domains.

    Article  CAS  PubMed  Google Scholar 

  44. Wilkens, S. & Forgac, M. Three-dimensional structure of the vacuolar ATPase proton channel by electron microscopy. J. Biol. Chem. 276, 44064–44068 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wilkens, S. & Capaldi, R. A. ATP synthase's second stalk comes into focus. Nature 393, 29 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Xu, T., Vasilyeva, E. & Forgac, M. Subunit interactions in the clathrin-coated vesicle V-ATPase complex. J. Biol. Chem. 274, 28909–28915 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Powell, B., Graham, L. A. & Stevens, T. H. Molecular characterization of the yeast vacuolar H+-ATPase proton pore. J. Biol. Chem. 275, 23654–23660 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. MacLeod, K. J., Vasilyeva, E., Baleja, J. D. & Forgac, M. Mutational analysis of the nucleotide binding sites of the yeast V-ATPase. J. Biol. Chem. 273, 150–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Vasilyeva, E., Liu, Q., MacLeod, K. J., Baleja, J. D. & Forgac, M. Cysteine scanning mutagenesis of the noncatalytic nucleotide binding site of the yeast V-ATPase. J. Biol. Chem. 275, 255–260 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. MacLeod, K. J., Vasilyeva, E., Merdek, K., Vogel, P. D. & Forgac, M. Photoaffinity labeling of wild-type and mutant forms of the yeast V-ATPase A subunit by 2-azido-[32P]-ADP. J. Biol. Chem. 274, 32869–32874 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Sagermann, M., Stevens, T. H. & Matthews, B. W. Crystal structure of the regulatory subunit H of the V-type ATPase of S. cerevisiae. Proc. Natl Acad. Sci. USA 98, 7134–7139 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Parra, K. J., Keenan, K. L. & Kane, P. M. The H subunit of the yeast V-ATPase inhibits the ATPase activity of cytosolic V1 complexes. J. Biol. Chem. 275, 21761–21767 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Curtis, K. K. & Kane, P. M. Novel V-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J. Biol. Chem. (in the press).

  54. Xu, T. & Forgac, M. Subunit D (Vma8p) of the yeast vacuolar (H+)-ATPase plays a role in coupling of proton transport and ATP hydrolysis. J. Biol. Chem. 275, 22075–22081 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Gruber, G. et al. Three-dimensional structure and subunit topology of the V1 ATPase from Manduca sexta midgut. Biochemistry 39, 8609–8616 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Arata, Y., Baleja, J. D. & Forgac, M. Cysteine-directed crosslinking to subunit B suggests that subunit E forms part of the peripheral stalk of the V-ATPase. J. Biol. Chem. 10.1074/jbc.M109967200.

  57. Hunt, I. E. & Bowman, B. J. The intriguing evolution of the b and G subunits in F-type and V-type ATPases. J Bioenerg Biomembr 29, 533–540 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Sorgen, P. L., Caviston, T. L., Perry, R. C. & Cain, B. D. Deletions in the second stalk of F1F0-ATP synthase in E. coli. J. Biol. Chem. 273, 27873–27878 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Charsky, C. M., Schumann, N. J. & Kane, P. M. Mutational analysis of subunit G (Vma10p) of the yeast V-ATPase. J. Biol. Chem. 275, 37232–37239 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Tomashek, J. J., Graham, L. A., Hutchins, M. U., Stevens, T. H. & Klionsky, D. J. V1-situated stalk subunits of the yeast V-ATPase. J. Biol. Chem. 272, 26787–26793 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H. & Anraku, Y. VMA11 and VMA16 encode the second and third proteolipid subunits of the Saccharomyces cerevisiae vacuolar membrane H+-ATPase. J. Biol. Chem. 272, 4795–4803 (1997).The first demonstration that the V-ATPase requires three distinct proteolipid subunits for function.

    Article  CAS  PubMed  Google Scholar 

  62. Bowman, B. J. & Bowman, E. J. Mutations in subunit c of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J. Biol. Chem. 10.1074/jbc.M109756200.

  63. Oka, T. & Futai, M. Requirement of V-ATPase for ovulation and embryogenesis in C. elegans. J. Biol. Chem. 275, 29556–29561 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Oka, T., Yamamoto, R. & Futai, M. Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J. Biol. Chem. 273, 22570–22576 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Sun-Wada, G. et al. Acidic endomembrane organelles are required for mouse postimplantation development. Dev. Biol. 228, 315–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Nishi, T., Kawasaki-Nishi, S. & Forgac, M. Expression and localization of the mouse homolog of the yeast V-ATPase 21-kDa subunit c (Vma16p). J. Biol. Chem. 276, 34122–34130 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Leng, X. H., Nishi, T. & Forgac, M. Transmembrane topography of the 100 kDa a subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J. Biol. Chem. 274, 14655–14661 (1999).The first information on the transmembrane folding of the V-ATPase a subunit.

    Article  CAS  PubMed  Google Scholar 

  68. Leng, X. H., Manolson, M. & Forgac, M. Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J. Biol. Chem. 273, 6717–6723 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Arg735 of the 100 kDa a subunit of the yeast V-ATPase is essential for proton translocation. Proc. Natl Acad. Sci. USA 98, 12397–12402 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Landolt-Marticorena, C., Williams, K. M., Correa, J., Chen, W. & Manolson, M. F. Evidence that the NH2-terminus of Vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector. J. Biol. Chem. 275, 15449–15457 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kane, P. M., Tarsio, M. & Liu, J. Early steps in assembly of the yeast V-ATPase. J. Biol. Chem. 274, 17275–17283 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Graham, L. A., Hill, K. J. & Stevens, T. H. Assembly of the yeast V-ATPase occurs in the ER and requires a Vma12p/Vma22p assembly complex. J. Cell Biol. 142, 39–49 (1998).An important insight into the in vivo assembly pathway of the V-ATPase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ludwig, J. et al. Identification and characterization of a novel 9.2 kDa membrane-sector associated protein of V-ATPase from chromaffin granules. J. Biol. Chem. 273, 10939–10947 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Merzendorfer, H., Huss, M., Schmid, R., Harvey, W. R. & Wieczorek, H. A novel insect V-ATPase subunit M9.7 is glycosylated extensively. J. Biol. Chem. 274, 17372–17378 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Kawasaki-Nishi, S., Bowers, K., Nishi, T., Forgac, M. & Stevens, T. H. The amino-terminal domain of the V-ATPase a subunit controls targeting and in vivo dissociation and the carboxy-terminal domain affects coupling of proton transport and ATP hydrolysis. J. Biol. Chem. 276, 47411–47420 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Manolson, M. F. et al. stv1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit vph1p. J. Biol. Chem. 269, 14064–14074 (1994).References 75 and 76 provide the first evidence that the a subunit contains information that is important for targeting, coupling efficiency and in vivo regulation.

    CAS  PubMed  Google Scholar 

  77. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation. J. Biol. Chem. 276, 17941–17948 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Nishi, T. & Forgac, M. Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse V-ATPase. J. Biol. Chem. 275, 6824–6830 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Holliday, L. S. et al. The amino-terminal domain of the B subunit of vacuolar H+-ATPase contains a filamentous actin binding site. J. Biol. Chem. 275, 32331–32337 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Bretton, S. et al. The B1 subunit of the H+-ATPase is a PDZ domain-binding protein. J. Biol. Chem. 275, 18219–18224 (2000).

    Article  Google Scholar 

  81. Cohen, A., Perzov, N., Nelson, H. & Nelson, N. A novel family of yeast chaperones involved in the distribution of V-ATPase and other membrane proteins. J. Biol. Chem. 274, 26885–26893 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Kane, P. M. Disassembly and reassembly of the yeast vacuolar H+-ATPase in vivo. J. Biol. Chem. 270, 17025–17032 (1995).This provides the first evidence for dissociation of the V-ATPase as a mechanism for regulating V-ATPase activity in vivo.

    CAS  PubMed  Google Scholar 

  83. Parra, K. J. & Kane, P. M. Reversible association between the V1 and V0 domains of yeast V-ATPase is an unconventional glucose-induced effect. Mol. Cell. Biol. 18, 7064–7074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, T. & Forgac, M. Microtubules are involved in glucose-dependent dissociation of the yeast V-ATPase in vivo. J. Biol. Chem. 276, 24855–24861 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Seol, J. H., Shevchenko, A., Shevchenko, A. & Deshaies, R. J. Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nature Cell Biol. 3, 384–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Oluwatosin, Y. E. & Kane, P. M. Mutations in the CYS4 gene provide evidence for regulation of the yeast V-ATPase by oxidation and reduction in vivo. J. Biol. Chem. 272, 28149–28157 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Forgac, M. The vacuolar H+-ATPase of clathrin-coated vesicles is reversibly inhibited by S-nitrosoglutathione. J. Biol. Chem. 274, 1301–1305 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Gunther, W., Luchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl Acad. Sci. USA 95, 8075–8080 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Kornak, U. et al. Loss of the CLC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Schapiro, F. B. & Grinstein, S. Determinants of the pH of the Golgi complex. J. Biol. Chem. 275, 21025–21032 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Umemoto, N., Yoshihisa, T., Hirata, R. & Anraku, Y. Roles of the vma3 gene product, subunit c of the vacuolar membrane H+-ATPase on vacuolar acidfication and protein transport. J. Biol. Chem. 265, 18447–18453 (1990).

    CAS  PubMed  Google Scholar 

  92. Wada, Y., Ohsumi, Y. & Anraku, Y. Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae: isolation and characterization of two classes of vam mutants. J. Biol. Chem. 267, 18665–18670 (1992).

    CAS  PubMed  Google Scholar 

  93. Nelson, N. et al. The cellular biology of proton-motive force generation by V-ATPases. J. Exp. Biol. 203, 89–95 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Arata, S. Kawasaki-Nishi, E. Shao and J. Baleja of Tufts University and S. Wilkens of the University of California, Riverside for many helpful discussions. This work was supported by National Institutes of Health Grant as well as awards from the Medical Foundation and the Uehara Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Forgac.

Related links

Related links

DATABASES

Interpro

V0 domain

 Saccharomyces Genome Database

Pma1

Rav1

Rav2

Skp1

STV1

VAM3

VMA4

Vma12

Vma21

Vma22

VPH1

Ynd1

 Swiss-Prot

ARF1

β1 integrin

β-COP

CD4

CLC-5

CLC-7

Rac1

Glossary

Na+/H+ EXCHANGER

This protein carries out antiport of Na+ and H+ across the plasma membrane and has an important role in regulation of cytoplasmic pH.

ENDOSOME

A vesicular compartment that is involved in the transport of internalized ligands from the plasma membrane to lysosomes, as well as in intracellular transport from Golgi to lysosomes.

LYSOSOME

An acidic compartment that contains digestive enzymes that are responsible for the degradation of various macromolecules.

SECRETORY VESICLE

A compartment that is used to sequester molecules within a cell and then deliver (secrete) them to the extracellular space by exocytosis.

RENAL INTERCALATED CELLS

Intercalated cells are present in the kidney cortex in the distal tubule and collecting duct. The A cells are involved in proton secretion and the B cells are involved in bicarbonate secretion.

OSTEOCLAST

A polarized and multinucleated cell that is responsible for bone resorption.

MACROPHAGE

A specialized cell that catches and destroys bacteria and other foreign cells.

MANNOSE 6-PHOSPHATE RECEPTOR

A receptor that ferries soluble lysosomal hydrolases to late endosomes by cycling between the trans-Golgi network (TGN) and late endosomes. It binds in the TGN to mannose 6-phosphate moieties on N-linked glycans of the hydrolases. It releases the hydrolases in late endosomes and returns to the TGN for another round of transport.

APICAL MEMBRANE

The plasma membrane of epithelial cells that faces the lumenal surface.

BASOLATERAL MEMBRANE

The plasma membrane of epithelial cells that faces adjacent cells and is in communication with the blood.

METABOLIC ACIDOSIS

A condition that is characterized by low plasma pH.

MECHANOSENSORY HAIR CELL

A cell in the inner ear that functions as a primary detector of sound.

NEUTROPHIL

The most common type of granulocyte cell that phagocytoses and destroys microorganisms.

EPIDIDYMIS

The coiled tube that overlies the testis where germ cells are stored and undergo further maturation.

VAS DEFERENS

Part of the duct system in testis that is responsible for the storage and maturation of sperm cells.

H+/K+ ANTIPORTER

A protein in the lumenal membrane of certain cells that lines the insect midgut, and which carries out exchange of H+ and K+ in opposite directions across this membrane.

PHAGOSOME

An organelle that is involved in the degradation of large particles, such as bacteria, that are taken up from the environment.

HEMICHANNEL

A half channel that reaches from one aqueous compartment to some point part way across the lipid bilayer.

ENERGY MINIMIZATION

The process of calculating the energy of different protein structures to deduce the most stable structure with the lowest energy.

COUPLING

The amount of proton transport that occurs relative to the amount of ATP hydrolysis. A 'tightly' coupled system is one in which proton transport occurs whenever ATP hydrolysis occurs, whereas in a completely 'uncoupled' system, ATP hydrolysis can occur without any accompanying proton transport.

RAS–cAMP PATHWAY

A signalling pathway that uses Ras and cAMP-activated protein kinase in response to various extracellular signals.

ACID LOAD

An excess of protons in the cytosol that can be the result of, for example, excess carbon dioxide delivery from the blood.

OSTEOPETROSIS

A genetic disesase in which insufficient bone resorption occurs, which leads to dense bones that, in some cases, lack marrow.

SCF UBIQUITIN-LIGASE COMPLEX

An E3 enzyme that catalyses the ubiquitylation of target proteins, using an F-Box protein as a specificity factor. SCF refers to 'Skp1/Cul1/F-Box protein'.

OSTEOPOROSIS

A disease in which bone resorption exceeds bone formation and results in weakened and brittle bones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishi, T., Forgac, M. The vacuolar (H+)-ATPases — nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3, 94–103 (2002). https://doi.org/10.1038/nrm729

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing