Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteasomes and their kin: proteases in the machine age

Key Points

  • The 26S proteasome is the most famous member of a family of 'chambered proteases' — multi-subunit enzymes that share a barrel-shaped structure and interior active sites that can only be accessed through a gated pore.

  • The architecture of these enzymes promotes processive substrate degradation and makes substrate unfolding a prerequisite for proteolysis. Chambered proteases therefore have dedicated chaperone (regulatory) complexes that confer the ability to recognize and unfold cognate substrates.

  • The substrates of each protease display a signal(s) that is recognized by its regulatory complex. Chambered proteases are exquisitely specific because the signals that they recognize are independent of the proteolytic cleavage sites

  • Unlike prokaryotic and archaebacterial family members, which usually recognize primary sequence motifs in the substrate in a direct manner, the eukaryotic 26S proteasome typically recognizes substrates that are tagged with a 'polyubiquitin chain' — a polymer assembled from the small, conserved protein ubiquitin. Eukaryotes have a vast array of enzymes that mediate the highly regulated process of polyubiquitin tagging.

  • Protease regulatory complexes carry out numerous functions, including recognition of substrate-based signals, unfolding of the substrate polypeptide chain, and gating of the protease pore. The regulatory (19S) complex of the 26S proteasome must also remove the polyubiquitin-chain signal, the constituent ubiquitins of which are then released and re-used.

  • Recent studies of the protein unfolding that is catalysed by protease regulatory complexes indicate that signal recognition, unfolding and translocation are intimately coupled and intrinsically energy dependent. Substrates of prokaryotic regulatory complexes seem to start unfolding at the degradation signal; this is not necessarily the case for the 26S proteasome.

  • In eukaryotes, the processes of signal (polyubiquitin) recognition and removal are surprisingly complex. Polyubiquitin removal must be precisely coordinated with downstream events in order to ensure that tagged substrates are, in fact, degraded.

  • Understanding the precise mechanisms of substrate unfolding by protease regulatory complexes is a goal of many laboratories at present, as is elucidating the specific functions of the subunits of the 19S regulatory complex. The answers to these and other questions could open new avenues for the design of proteasome-directed therapeutics.

Abstract

'Chambered proteases', including the eukaryotic 26S proteasome, use the energy of ATP to drive the unfolding and translocation of a polypeptide substrate into a chamber of sequestered proteolytic active sites. These proteases have diverse functions and are found in all three kingdoms of life. Understanding chambered proteases requires answers to two questions — how do these remarkable machines select the correct target proteins and how do they bring about the processive degradation of these molecules?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A gallery of chambered proteases.
Figure 2: Electron-microscopy images of chambered-protease complexes.
Figure 3: The subunit composition of the 19S complex of Saccharomyces cerevisiae.
Figure 4: Steps in substrate proteolysis by 26S proteasomes.

Similar content being viewed by others

References

  1. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997). Despite being assembled from 14 unique polypeptides, the eukaryotic 20S proteasome is remarkably similar to its archaebacterial cousin. Furthermore, the closed state of the axial pore indicated that the 19S complex would regulate pore gating.

    CAS  PubMed  Google Scholar 

  2. Unno, M. et al. The stucture of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618 (2002).

    CAS  PubMed  Google Scholar 

  3. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    CAS  PubMed  Google Scholar 

  4. Whitby, F. G. et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408, 115–120 (2000). The structure of a non-ATPase regulatory complex bound to the yeast 20S complex led to a persuasive molecular model for protease pore opening by a regulatory complex.

    CAS  PubMed  Google Scholar 

  5. Wang, J., Hartling, J. A. & Flanagan, J. M. The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91, 447–456 (1997).

    CAS  PubMed  Google Scholar 

  6. Bochtler, M., Ditzel, L., Groll, M. & Huber, R. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc. Natl Acad. Sci. USA 94, 6070–6074 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    CAS  PubMed  Google Scholar 

  8. Ogura, T. & Wilkinson, A. J. AAA+ superfamily ATPases: common structure — diverse function. Genes Cells 6, 575–597 (2001).

    CAS  PubMed  Google Scholar 

  9. Wolf, S. et al. Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J. Mol. Biol. 277, 13–25 (1998).

    CAS  PubMed  Google Scholar 

  10. Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P. & Goldberg, A. L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274, 26008–26014 (1999).

    CAS  PubMed  Google Scholar 

  11. Glickman, M. H. et al. A subcomplex of the proteasome regulatory particle required for ubiquitin–conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615–623 (1998). The 19S complex consists of two discrete subcomplexes — the first (lid) has homology to two other complexes and the second (base) is similar to the simpler regulatory complexes of bacteria.

    CAS  PubMed  Google Scholar 

  12. Rubin, C. M., Glickman, M. H., Larsen, C. N., Dhruvakumar, S. & Finley, D. Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909–4919 (1998). The six ATPases in the base of the 19S complex are functionally distinct.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fu, H., Reis, N., Lee, Y., Glickman, M. H. & Vierstra, R. D. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20, 7096–7107 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Leggett, D. S. et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10, 495–507 (2002).

    CAS  PubMed  Google Scholar 

  16. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  18. Deshaies, R. J. SCF and cullin/RING H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    CAS  PubMed  Google Scholar 

  19. Conaway, R. C. & Conaway, J. W. The von Hippel–Lindau tumor suppressor complex and regulation of hypoxia-inducible transcription. Adv. Cancer Res. 85, 1–12 (2002).

    CAS  PubMed  Google Scholar 

  20. Peters, J. M. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9, 931–943 (2002).

    CAS  PubMed  Google Scholar 

  21. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    CAS  PubMed  Google Scholar 

  22. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000). A polyubiquitin chain that is four ubiquitins long is the minimum signal required for efficient targeting to 26S proteasomes.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  24. Elsasser, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002).

    CAS  PubMed  Google Scholar 

  25. Hartmann-Petersen, R., Seeger, M. & Gordon, C. Transferring substrates to the 26S proteasome. Trends Biochem. Sci. 28, 26–31 (2003).

    CAS  PubMed  Google Scholar 

  26. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).

    CAS  PubMed  Google Scholar 

  27. van Nocker, S. et al. The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol. Cell. Biol. 16, 6020–6028 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie, Y. & Varshavsky, A. UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nature Cell Biol. 4, 1003–1007 (2002).

    CAS  PubMed  Google Scholar 

  29. You, J. & Pickart, C. M. A hect domain E3 enzyme assembles novel polyubiquitin chains. J. Biol. Chem. 276, 19871–19878 (2001).

    CAS  PubMed  Google Scholar 

  30. Wilkinson, C. R. et al. Proteins containing the UBA domain are able to bind multi-ubiquitin chains. Nature Cell Biol. 3, 939–943 (2001).

    CAS  PubMed  Google Scholar 

  31. Schauber, C. et al. Rad23 links DNA repair to the ubiquitin/proteasome pathway. Nature 391, 715–718 (1997).

    Google Scholar 

  32. Raasi, S. & Pickart, C. M. Rad23 ubiquitin-associated domains (UBA) inhibit 26S proteasome-catalyzed proteolysis by sequestering lysine 48-linked polyubiquitin chains. J. Biol. Chem. 278, 8951–8959 (2003).

    CAS  PubMed  Google Scholar 

  33. Glockzin, S., Ogi, F. -X., Hengstermann, A., Scheffner, M. & Blattner, C. Involvement of the DNA repair protein hHR23 in p53 degradation. Mol. Cell. Biol. 23, 8960–8969 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115, 71–82 (2003).

    CAS  PubMed  Google Scholar 

  35. Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA 98, 10584–10589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hoskins, J. R., Yanagihara, K., Mizuuchi, K. & Wickner, S. ClpAP and ClpXP degrade proteins with tags located in the interior of the primary sequence. Proc. Natl Acad. Sci. USA 17, 11037–11042 (2002).

    Google Scholar 

  37. Levchenko, I., Yamauchi, M. & Baker, T. A. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev. 11, 1561–1572 (1997).

    CAS  PubMed  Google Scholar 

  38. Gonzalez, M., Rasulova, F., Maurizi, M. R. & Woodgate, R. Subunit-specific degradation of the UmuD/D′ heterodimer by the ClpXP protease: the role of trans recognition in UmuD′ stability. EMBO J. 19, 5251–5258 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gonciarz-Swiatek, M. et al. Recognition, targeting, and hydrolysis of the λ O replication protein by the ClpP/ClpX protease. J. Biol. Chem. 274, 13999–14005 (1999).

    CAS  PubMed  Google Scholar 

  40. Karzai, A. W., Roche, E. D. & Sauer, R. T. The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nature Struct. Biol. 7, 449–445 (2000).

    CAS  PubMed  Google Scholar 

  41. Zhang, M., Pickart, C. M. & Coffino, P. Determinants of proteasome recognition of ornithine decarboxylase, a ubiquitin-independent substrate. EMBO J. 22, 1488–1496 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Coffino, P. Regulation of cellular polyamines by antizyme. Nature Rev. Mol. Cell Biol. 2, 188–194 (2001).

    CAS  Google Scholar 

  43. Lee, C., Schwartz, M. P., Prakash, S., Iwakura, M. & Matouschek, A. ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol. Cell 7, 627–637 (2001). Prokaryotic chambered proteases unfold their substrates starting at the degradation signal, and without reference to the thermodynamic stability of the substrate.

    CAS  PubMed  Google Scholar 

  44. Burton, R. E., Siddiqui, S. M., Kim, Y. -I., Baker, T. A. & Sauer, R. T. Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J. 20, 3092–3100 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kenniston, J. A., Baker, T. A., Fernandez, J. M. & Sauer, R. T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of a AAA+ degradation machine. Cell 114, 511–520 (2003). Studies with a prokaryotic protease show that the cost of translocation consumes much of the energy that is used in degradation.

    CAS  PubMed  Google Scholar 

  46. Grantcharova, V., Alm, E. J., Baker, D. & Horwich, A. L. Mechanisms of protein folding. Curr. Opin. Struct. Biol. 11, 70–82 (2001).

    CAS  PubMed  Google Scholar 

  47. Weber-Ban, E. U., Reid, G. B., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 410, 90–93 (1999).

    Google Scholar 

  48. Matouschek, A. Protein unfolding — an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

    CAS  PubMed  Google Scholar 

  49. Verma, R., McDonald, H., Yates, J. R. & Deshaies, R. J. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin–Cdk. Mol. Cell 8, 439–448 (2001).

    CAS  PubMed  Google Scholar 

  50. Levchenko, I., Luo, L. & Baker, T. A. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9, 2399–2408 (1995).

    CAS  PubMed  Google Scholar 

  51. Wickner, S. et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc. Natl Acad. Sci. USA 91, 12218–12222 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Russell, S. J., Reed, S. H., Huang, W., Friedberg, E. C. & Johnston, S. A. The 19S regulatory complex of the proteasome functions independently of proteolysis in nucleotide excision repair. Mol. Cell 3, 687–695 (1999).

    CAS  PubMed  Google Scholar 

  53. Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T. & Johnston, S. A. The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol. Cell 7, 981–991 (2001).

    CAS  PubMed  Google Scholar 

  54. Braun, B. C. et al. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol. 1, 221–226 (1999).

    CAS  PubMed  Google Scholar 

  55. Strickland, E., Hakala, K., Thomas, P. J. & DeMartino, G. N. Recognition of misfolded proteins by PA700, the regulatory subcomplex of the 26S proteasome. J. Biol. Chem. 275, 5565–5572 (2000).

    CAS  PubMed  Google Scholar 

  56. Liu, C. et al. Conformational remodeling of proteasomal substrates by PA700, the 19S regulatory complex of the 26S proteasome. J. Biol. Chem. 277, 26815–26820 (2002).

    CAS  PubMed  Google Scholar 

  57. Johnson, E. S., Gonda, D. K. & Varshavsky, A. cistrans recognition and subunit-specific degradation of short-lived proteins. Nature 346, 287–291 (1990).

    CAS  PubMed  Google Scholar 

  58. Chen, Z. et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin–proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    CAS  PubMed  Google Scholar 

  59. Hoskins, J. R., Singh, S. K., Maruizi, M. R. & Wickner, S. Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc. Natl Acad. Sci. USA 97, 8892–8897 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh, S. K., Grimaud, R., Hoskins, J. R., Wickner, S. & Maurizi, M. R. Unfolding and internalization of proteins by the ATP-dependent proteases ClpXP and ClpAP. Proc. Natl Acad. Sci. USA 97, 8898–8903 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, Y. -I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    CAS  PubMed  Google Scholar 

  62. Flynn, J. M., Neher, S. B., Kim, Y. -I., Sauer, R. T. & Baker, T. A. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol. Cell 11, 1671–1683 (2003).

    Google Scholar 

  63. Ortega, J., Singh, S. K., Ishikawa, T., Maurizi, M. R. & Steven, A. C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol. Cell 6, 1515–1521 (2000). Presents especially dramatic electron-microscopy images of substrate internalization by ClpXP.

    CAS  PubMed  Google Scholar 

  64. Sousa, M. C. et al. Crystal and solution structures of an HslUV protease–chaperone complex. Cell 103, 633–643 (2000).

    CAS  PubMed  Google Scholar 

  65. Wang, J. et al. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9, 177–184 (2001).

    CAS  PubMed  Google Scholar 

  66. Guo, F., Maurizi, M. R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002).

    CAS  PubMed  Google Scholar 

  67. Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78 (2003).

    CAS  PubMed  Google Scholar 

  68. Carrion-Vasquez, M. et al. The mechanical stability of ubiquitin is linkage-dependent. Nature Struct. Biol. 10, 738–743 (2003).

    Google Scholar 

  69. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the 26S proteasome. Nature 419, 403–407 (2002).

    CAS  PubMed  Google Scholar 

  70. Petroski, M. D. & Deshaies, R. J. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell 11, 1435–1444 (2003).

    CAS  PubMed  Google Scholar 

  71. Rape, M. & Jentsch, S. Taking a bite: proteasomal processing. Nature Cell Biol. 4, E113–E116 (2002).

    CAS  PubMed  Google Scholar 

  72. Verma, R. & Deshaies, R. A proteasome howdunit: the case of the missing signal. Cell 101, 341–344 (2000).

    CAS  PubMed  Google Scholar 

  73. Lin, L. & Kobayashi, M. Stability of the Rel homology domain is critical for generation of NF-κB p50 subunits. J. Biol. Chem. 278, 31479–31485 (2003).

    CAS  PubMed  Google Scholar 

  74. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HslU. Structure 9, 1107–1116 (2001).

    CAS  PubMed  Google Scholar 

  75. Kohler, A. et al. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol. Cell 7, 1143–1152 (2001). One of the six ATPase subunits of the 19S complex has a specific role in opening the axial pore of the 20S complex.

    CAS  PubMed  Google Scholar 

  76. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 7, 1062–1067 (2000).

    CAS  PubMed  Google Scholar 

  77. Kloetzel, P. -M. Antigen processing by the proteasome. Nature Rev. Mol. Cell Biol. 2, 179–187 (2001).

    CAS  Google Scholar 

  78. Forster, A. & Hill, C. P. Proteasome degradation: enter the substrate. Trends Cell Biol. 13, 550–553 (2003).

    CAS  PubMed  Google Scholar 

  79. Reid, B. G., Fenton, W. A., Horwich, A. L. & Weber-Ban, E. U. ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc. Natl Acad. Sci. USA 98, 3768–3772 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, C., Prakash, S. & Matouschek, A. Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J. Biol. Chem. 277, 34750–34765 (2002).

    Google Scholar 

  81. Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NFκB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19, 3664–3673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu, C. -W., Corboy, M. J., DeMartino, G. N. & Thomas, P. J. Endoproteolytic activity of the proteasome. Science 299, 408–411 (2003). Provides some of the clearest evidence that proteasome proteolysis can begin at an internal loop of the polypeptide chain of the substrate.

    CAS  PubMed  Google Scholar 

  83. Kisselev, A. F., Kaganovich, D. & Goldberg, A. L. Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. Evidence for peptide-induced channel opening in the α-rings. J. Biol. Chem. 277, 22260–22770 (2002).

    CAS  PubMed  Google Scholar 

  84. Cascio, P., Call, M., Petre, B. M., Walz, T. & Goldberg, A. L. Properties of the hybrid form of the 26S proteasome containing both 19S and PA28 complexes. EMBO J. 21, 2636–2645 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tanahashi, N. et al. Hybrid proteasomes. Induction by interferon-γ and contribution to ATP-dependent proteolysis. J. Biol. Chem. 275, 4336–4345 (2000).

    Google Scholar 

  86. Wintrode, P. L., Makhatadze, G. I. & Privalov, P. L. Thermodynamics of ubiquitin unfolding. Proteins 18, 246–253 (1994).

    CAS  PubMed  Google Scholar 

  87. Tran, H. J., Allen, M. D., Lowe, J. & Bycroft, M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42, 11460–11465 (2003).

    CAS  PubMed  Google Scholar 

  88. Ambroggio, X. I., Rees, D. C. & Deshaies, R. J. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. Jan 2004 (doi:10.1371/journal.pbio.0020002).

  89. Maytal-Kivity, V., Reis, N., Hofmann, K. & Glickman, M. MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokayotes, is critical for Rpn11 function. BMC Biochem. 3, 28–38 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. Verma, R. et al. Role of Rpn11 metalloprotease motif in deubiquitination and degradation by the 26S proteasome. Science 298, 611–615 (2002).

    CAS  PubMed  Google Scholar 

  91. Borodovsky, A. et al. A novel active site directed probe specific for deubiquitinating enzyme reveals proteasome association of Usp14. EMBO J. 20, 5187–5196 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lam, Y. A., Xu, W., DeMartino, G. N. & Cohen, R. E. Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature 385, 737–740 (1997).

    CAS  PubMed  Google Scholar 

  93. Li, T., Naqvi, N. I., Hang, H. & Teo, T. S. Identification of a 26S proteasome-associated UCH in fission yeast. Biochem. Biophys. Res. Commun. 272, 170–175 (2000).

    Google Scholar 

  94. Holzl, H. et al. The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J. Cell Biol. 150, 119–130 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Amerik, A. Y., Nowak, J., Swaminathan, S. & Hochstrasser, M. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11, 3365–3380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Adams, J. Proteasome inhibitors as new anticancer drugs. Curr. Opin. Oncol. 14, 628–634 (2002).

    CAS  PubMed  Google Scholar 

  98. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003).

    CAS  Google Scholar 

  99. Finley, D. Ubiquitin chained and crosslinked. Nature Cell Biol. 4, E121–E123 (2002).

    CAS  PubMed  Google Scholar 

  100. Ortega, J., Lee, H. S., Maurizi, M. R. & Steven, A. C. Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J. 21, 4938–4949 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the many individuals whose work could not be cited due to space limitations. We thank M. Hochstrasser for comments on the manuscript and T. Yao, M. Bewley and A. Cohen for help with the figures. Work in our laboratories is funded by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile M. Pickart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

ClpA

ClpX

HslU

HslV

Saccharomyces genome database

Hul5

Rpn10

Rpn11

RPT1

Rpt2

RPT6

ubiquitin-processing protease 6

Swiss-Prot

Az

ODC

POH1

S4

S5a

ubiquitin-fusion degradation 4

ubiquitin-specific protease 14

UCH37

Glossary

CHAMBERED PROTEASE

A multi-subunit proteolytic enzyme that has a barrel-shaped structure and sequestered active sites. It is sometimes called a compartmentalized or self-compartmentalized protease.

26S PROTEASOME

The main chambered protease of eukaryotes. Named for its approximate sedimentation coefficient, it is assembled from proteolytic (20S) and regulatory (19S) complexes. We use the term '26S' for hybrid 20S–19S and 19S–20S–19S complexes.

UBIQUITIN

A conserved, 76-amino-acid protein in eukaryotes that is conjugated through its carboxyl terminus to amino groups (usually on lysine residues) of cellular proteins.

HslV

(heat-shock-locus protease). A chambered protease of E. coli, the proteolytic and regulatory complexes of which consist of HslV dodecamers and HslU hexamers (sometimes called ClpQ and ClpY), respectively. These subcomplexes associate to form the holoenzyme that is known as HslUV.

ClpP

(caseinolytic protease). A chambered protease of E. coli in which the proteolytic complex consists of 14 ClpP subunits (arranged as two rings). Hexameric rings of ClpA or ClpX subunits (two distinct regulatory complexes) associate with ClpP to form ClpAP or ClpXP holoenzymes.

20S PROTEASOME

The proteolytic complex of proteasomes has 28 subunits arranged as four rings. It is named for its approximate sedimentation coefficient and has orthologues in some eubacteria and archaebacteria.

AAA+ ATPASES

ATPases that are associated with a variety of cellular activities. A superfamily of proteins with one or two nucleotide-binding domains ('AAA modules'), which often form ring-like oligomers and function as chaperones in diverse cellular processes.

19S REGULATORY COMPLEX

Named for its approximate sedimentation coefficient and also known as PA700, one or two copies of this 18-subunit complex associate with the 20S proteasome to form a 26S proteasome.

COP9 SIGNALOSOME

A multi-protein complex that has numerous regulatory roles. Its subunits are homologous to a subset of the Rpn subunits in the 19S regulatory complex.

Ubp/USP

(ubiquitin-processing proteases/ubiquitin-specific proteases). Yeast and mammalian members, respectively, of a family of cysteine proteases that hydrolyse peptide or isopeptide bonds that involve the carboxyl terminus of ubiquitin.

POLYUBIQUITIN CHAIN

A polymer that results from the conjugation of ubiquitin to itself. Chains that are linked through lysine 48 of each ubiquitin target substrates for degradation by 26S proteasomes.

E3 UBIQUITIN LIGASES

Enzymes that are responsible for the conjugation of ubiquitin to substrate proteins.

Ufd4

A ubiquitin ligase that is part of the 'ubiquitin-fusion degradation' pathway, which consists of enzymes that facilitate the polyubiquitylation of ubiquitin-fusion proteins.

UBL–UBA PROTEINS

A family of proteins in which UBL (ubiquitin-like) and UBA (ubiquitin-associated) domains are present in a single polypeptide chain.

SSRA

A peptide tag that is encoded by a small stable RNA (10Sa RNA) and is added to the carboxyl termini of stalled translation products in E. coli in order to target these aberrant polypeptides for degradation by chambered proteases.

IκBα–NF-κB

The nuclear factor-κB transcription factor is processed (from a p105 form to a p50 form) by 26S proteasomes. NF-κB is sequestered in the cytoplasm through associations with members of the inhibitor of κB family, which includes IκBα. IκBα must be degraded for NF-κB to activate the expression of inflammatory genes in the nucleus.

PA28

(proteasome activator-28). A family of regulatory complexes that have a role in the production of antigenic peptides. They consist of heptamers of 28-kDa non-ATPase subunits.

MPN+

The protein domain MPN+ ('Mpr1, Pad1, amino-terminal'; also known as JAMM (Jab1, MPN-domain metalloprotease)) is thought to coordinate zinc and to catalyse proteolysis.

Zn2+-METALLOPROTEASE

A protease that has an essential zinc atom in its active site.

CYSTEINE PROTEASE

A protease that has a catalytic cysteine residue in its active site.

UCH

Ubiquitin-carboxy-terminal hydrolases are ubiquitin-specific cysteine proteases that are similar to Ubp/USPs, but that belong to a different protein family.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickart, C., Cohen, R. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5, 177–187 (2004). https://doi.org/10.1038/nrm1336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing