Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain

Abstract

Neuroblasts arising in the adult forebrain that travel to the olfactory bulb use two modes of migration: tangentially, along the rostral migratory stream, and radially, in the core of the olfactory bulb where they start to ascend to the outer layers. Although the mechanisms of tangential migration have been extensively studied, the factors controlling radial migration remain unexplored. Here we report that the extracellular matrix glycoprotein tenascin-R, expressed in the adult mouse olfactory bulb, initiates both the detachment of neuroblasts from chains and their radial migration. Expression of tenascin-R is activity dependent, as it is markedly reduced by odor deprivation. Furthermore, grafting of tenascin-R-transfected cells into non-neurogenic regions reroutes migrating neuroblasts toward these regions. The identification of an extracellular microenvironment capable of directing migrating neuroblasts provides insights into the mechanisms regulating radial migration in the adult olfactory bulb and offers promising therapeutic venues for brain repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistological detection of tenascin-R in the SVZ-OB pathway of adult mice.
Figure 2: Reduced density of newborn cells in the olfactory bulb of tenascin-R-deficient mice at 21 d after BrdU injection.
Figure 3: Normal proliferation in the SVZ and RMS of tenascin-R-deficient mice.
Figure 4: Normal chain organization and tangential migration of neuroblasts in tenascin-R-deficient mice.
Figure 5: Abnormal radial migration in the olfactory bulb of tenascin-R-deficient mutant mice.
Figure 6: Tenascin-R acts as a detachment signal for tangentially migrating neuroblasts.
Figure 7: Ectopic expression of tenascin-R reroutes migrating neuroblasts.
Figure 8: Activity-dependent expression of tenascin-R in the olfactory bulb.

Similar content being viewed by others

References

  1. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  Google Scholar 

  2. Alvarez-Buylla, A. & Garcia-Verdugo, J.M. Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634 (2002).

    Article  CAS  Google Scholar 

  3. Hack, I., Bancila, M., Loulier, K., Carroll, P. & Cremer, H. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat. Neurosci. 5, 939–945 (2002).

    Article  CAS  Google Scholar 

  4. Jones, F.S. & Jones, P.L. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev. Dyn. 218, 235–259 (2000).

    Article  CAS  Google Scholar 

  5. Fuss, B., Wintergerst, E.S., Bartsch, U. & Schachner, M. Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. J. Cell Biol. 120, 1237–1249 (1993).

    Article  CAS  Google Scholar 

  6. Srinivasan, J., Schachner, M. & Catterall, W.A. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Proc. Natl. Acad. Sci. USA 95, 15753–15757 (1998).

    Article  CAS  Google Scholar 

  7. Xiao, Z.C. et al. Tenascin-R is a functional modulator of sodium channel beta subunits. J. Biol. Chem. 274, 26511–26517 (1999).

    Article  CAS  Google Scholar 

  8. Weber, P. et al. Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J. Neurosci. 19, 4245–4262 (1999).

    Article  CAS  Google Scholar 

  9. Bruckner, G. et al. Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J. Comp. Neurol. 428, 616–629 (2000).

    Article  CAS  Google Scholar 

  10. Nikonenko, A., Schmidt, S., Skibo, G., Bruckner, G. & Schachner, M. Tenascin-R-deficient mice show structural alterations of symmetric perisomatic synapses in the CA1 region of the hippocampus. J. Comp. Neurol. 456, 338–349 (2003).

    Article  CAS  Google Scholar 

  11. Saghatelyan, A.K. et al. Reduced perisomatic inhibition, increased excitatory transmission, and impaired long-term potentiation in mice deficient for the extracellular matrix glycoprotein tenascin-R. Mol. Cell. Neurosci. 17, 226–240 (2001).

    Article  CAS  Google Scholar 

  12. Wichterle, H., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18, 779–791 (1997).

    Article  CAS  Google Scholar 

  13. Chazal, G., Durbec, P., Jankovski, A., Rougon, G. & Cremer, H. Consequences of neural cell adhesion molecule deficiency on cell migration in the rostral migratory stream of the mouse. J. Neurosci. 20, 1446–1457 (2000).

    Article  CAS  Google Scholar 

  14. Tanapat, P., Hastings, N.B., Reeves, A.J. & Gould, E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J. Neurosci. 19, 5792–5801 (1999).

    Article  CAS  Google Scholar 

  15. Kee, N., Sivalingam, S., Boonstra, R. & Wojtowicz, J.M. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods 115, 97–105 (2002).

    Article  CAS  Google Scholar 

  16. Pesheva, P. & Probstmeier, R. The yin and yang of tenascin-R in CNS development and pathology. Prog. Neurobiol. 61, 465–493 (2000).

    Article  CAS  Google Scholar 

  17. Xiao, Z.C. et al. Defasciculation of neurites is mediated by tenascin-R and its neuronal receptor F3/11. J. Neurosci. Res. 52, 390–404 (1998).

    Article  CAS  Google Scholar 

  18. Boudreau, N. & Bissell, M.J. Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr. Opin. Cell Biol. 10, 640–646 (1998).

    Article  CAS  Google Scholar 

  19. Pesheva, P., Gennarini, G., Goridis, C. & Schachner, M. The F3/11 cell adhesion molecule mediates the repulsion of neurons by the extracellular matrix glycoprotein J1-160/180. Neuron 10, 69–82 (1993).

    Article  CAS  Google Scholar 

  20. Probstmeier, R., Michels, M., Franz, T., Chan, B.M. & Pesheva, P. Tenascin-R interferes with integrin-dependent oligodendrocyte precursor cell adhesion by a ganglioside-mediated signalling mechanism. Eur. J. Neurosci. 11, 2474–2488 (1999).

    Article  CAS  Google Scholar 

  21. Xiao, Z.C. et al. Isolation of a tenascin-R binding protein from mouse brain membranes. A phosphacan-related chondroitin sulfate proteoglycan. J. Biol. Chem. 272, 32092–32101 (1997).

    Article  CAS  Google Scholar 

  22. Milev, P. et al. High affinity binding and overlapping localization of neurocan and phosphacan/protein-tyrosine phosphatase-zeta/beta with tenascin-R, amphoterin, and the heparin-binding growth-associated molecule. J. Biol. Chem. 273, 6998–7005 (1998).

    Article  CAS  Google Scholar 

  23. Thomas, L.B., Gates, M.A. & Steindler, D.A. Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix-rich pathway. Glia 17, 1–14 (1996).

    Article  CAS  Google Scholar 

  24. Murase, S. & Horwitz, A.F. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22, 3568–3579 (2002).

    Article  CAS  Google Scholar 

  25. Carleton, A., Petreanu, L.T., Lansford, R., Alvarez-Buylla, A. & Lledo, P.M. Becoming a new neuron in the adult olfactory bulb. Nat. Neurosci. 6, 507–518 (2003).

    Article  CAS  Google Scholar 

  26. Komuro, H. & Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 260, 95–97 (1993).

    Article  CAS  Google Scholar 

  27. Saghatelyan, A. et al. Recognition molecule associated carbohydrate inhibits postsynaptic GABAb receptors: a mechanism for homeostatic regulation of GABA release in perisomatic synapses. Mol. Cell. Neurosci. 24, 271–282 (2003).

    Article  CAS  Google Scholar 

  28. Kennedy, T.E. & Tessier-Lavigne, M. Guidance and induction of branch formation in developing axons by target-derived diffusible factors. Curr. Opin. Neurobiol. 5, 83–90 (1995).

    Article  CAS  Google Scholar 

  29. Svendsen, C.N. & Sofroniew, M.V. Do central nervous system neurons require target-derived neurotrophic support for survival throughout adult life and aging? Perspect. Dev. Neurobiol. 3, 133–142 (1996).

    CAS  PubMed  Google Scholar 

  30. Frazier, L.L. & Brunjes, P.C. Unilateral odor deprivation: early postnatal changes in olfactory bulb cell density and number. J. Comp. Neurol. 269, 355–370 (1998).

    Article  Google Scholar 

  31. Brunjes, P.C. Unilateral naris closure and olfactory system development. Brain Res. Brain Res. Rev. 19, 146–160 (1994).

    Article  CAS  Google Scholar 

  32. Cummings, D.M. & Brunjes, P.C. The effects of variable periods of functional deprivation on olfactory bulb development in rats. Exp. Neurol. 148, 360–366 (1997).

    Article  CAS  Google Scholar 

  33. Henegar, J.R. & Maruniak, J.A. Quantification of the effects of long-term unilateral naris closure on the olfactory bulbs of adult mice. Brain Res. 568, 230–234 (1991).

    Article  CAS  Google Scholar 

  34. Cummings, D.M., Henning, H.E. & Brunjes, P.C. Olfactory bulb recovery after early sensory deprivation. J. Neurosci. 17, 7433–7440 (1997).

    Article  CAS  Google Scholar 

  35. Rochefort, C., Gheusi, G., Vincent, J.D. & Lledo, P.M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  Google Scholar 

  36. Magavi, S.S., Leavitt, B.R. & Macklis, J.D. Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955 (2000).

    Article  CAS  Google Scholar 

  37. Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z. & Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970 (2002).

    Article  CAS  Google Scholar 

  38. Nakatomi, H. et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441 (2002).

    Article  CAS  Google Scholar 

  39. Meisami, E. Effects of olfactory deprivation on postnatal growth of the rat olfactory bulb utilizing a new method for production of neonatal unilateral anosmia. Brain Res. 107, 437–444 (1976).

    Article  CAS  Google Scholar 

  40. Morganti, M.C., Taylor, J., Pesheva, P. & Schachner, M. Oligodendrocyte-derived J1-160/180 extracellular matrix glycoproteins are adhesive or repulsive depending on the partner cell type and time of interaction. Exp. Neurol. 109, 98–110 (1990).

    Article  CAS  Google Scholar 

  41. Fan, C.M. & Tessier-Lavigne, M. Patterning of mammalian somites by surface ectoderm and notochord: evidence for sclerotome induction by a hedgehog homolog. Cell 79, 1175–1186 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Pasteur Institute, CNRS, The Annette Gruner-Schlumberger Foundation and grants from the French Ministry of Research and Education (ACI 'Biologie du Développement et Physiologie Intégrative' and GIS 'Infections à Prions') and the Gemeinnuetzige Hertie Stiftung. We are grateful to R. Grailhe and N. Mechawar for help with in situ hybridization, F.-A. Weltzien for help with quantitative PCR analysis, P. Roux at the 'Plate-form d'Imagerie Dynamique' of the Institut Pasteur for help with confocal microscopy, A. Cardona for help with the β-imager and M.-M. Gabellec for excellent technical assistance. We thank S. Freitag and F. Morellini for providing tenascin-R-deficient mice and M. Sibbe and M. Kutsche for the pcDNA3-TNR construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Marie Lledo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Normal proliferation in the RMSOB of TNR-deficient mice. (a) PSA-NCAM (green) and BrdU (red) immunostaining in the RMSOBof control and TNR-deficient mice 2 h after BrdU injection. Note the very low numbers of BrdU+ cells (arrows) in the two groups. (b) Quantification of BrdU+ cells 2 h after BrdU injection and the proliferative marker Ki67+ cells in the RMSOB of control and TNR-deficient mice reveals no difference in the proliferation rates between the two genotypes. Data are presented as means ± s.e.m. Scale bars: a, 50 µm. (JPG 101 kb)

Supplementary Fig. 2

Reduced expression of TNR in the OB following odor deprivation. (a) Western blot analysis for TNR and NeuN expressions in the control (Ctrl) and occluded (Occl) bulbs following 20 days of sensory deprivation. Note the specific reduction of TNR expression in the odor-deprived bulb. (b) Effect of sensory deprivation on TNR mRNA and protein levels calculated by quantitative PCR and Western blotting 7 and 20 days following nostril occlusion, respectively. * and ** indicate significant differences of P < 0.05 and P < 0.01, respectively. Values in histograms are means ± s.e.m. (JPG 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saghatelyan, A., de Chevigny, A., Schachner, M. et al. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat Neurosci 7, 347–356 (2004). https://doi.org/10.1038/nn1211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing