Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Somatic overgrowth associated with overexpression of insulin–like growth factor II

Abstract

Overexpression of the normally imprinted fetal insulin–like growth factor II (IGF2) has been implicated in the pathogenesis of the cancer–predisposing Beckwith–Wiedemann syndrome (BWS). We have detected constitutional relaxation of imprinting of IGF2 in four children with somatic overgrowth who do not show diagnostic features of BWS. Three children showed constitutional abnormalities of H19 methylation. All four children showed nephromegaly and two developed Wilms' tumors. Gene methylation is known to be associated with gene silencing, and three children showed constitutional abnormalities of HI9 gene methylation. Disruption of H19 methylation, and concomitant relaxation of IGF2 imprinting, provides another mechanism that can increase IGF2 expression in children with overgrowth. The accumulated data on normal and pathologic IGF2 expression are now sufficient to define an entity, “IGF2 overgrowth disorder,” of which BWS may be one extreme manifestation. These findings have broad implications for the characterization of idiopathic overgrowth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. DeChiara, T.M., Efstradiadis, A. & Robertson, E.J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345, 78–80 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Hedborg, F., Holmgren, L., Sandstedt, B. & Ohlsson, R. The cell type-specific IGF2 expression during early human development correlates to the pattern of overgrowth and neoplasia in the Beckwith-Wiedemann syndrome. Am. J. Pathol. 145, 802–817 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reeve, A.E., Eccles, M.R., Wilkins, R.J.W., Bell, G.I. & Millow, L.J. Expression of insulin-like growth factor-II transcripts in Wilms' tumour. Nature 317, 258–260 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Scott, J. et al. Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. Nature 317, 261–262 (1985).

    Google Scholar 

  6. Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature 362, 747–749 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 362, 749–751 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Zhan, S., Shapiro, D.N. & Helman, L.J. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J. Clin. Invest. 94, 445–448 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pedone, P.V. et al. Mono- and bi-allelic expression of insulin-like growth factor II gene in human muscle tumors. Hum. Mol. Genet. 3, 1117–1121 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Weksberg, R., Shem, D.R., Song, Q.L. & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet. 5, 143–149 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Slatter, R.E. et al. Mosaic uniparental disomy in Beckwith-Wiedemann syndrome. J. Med. Genet. 31, 749–753 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beckwith, J.B., roglossia, omphalocele, adrenal cytomegaly, gigantism, and hyperplastic visceromegaly. Birth Defects 5, 188–196 (1969).

    Google Scholar 

  13. Wiedemann, H.-R. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur. J. Pediatr. 141, 129 (1983).

    Article  Google Scholar 

  14. Pettenati, M.J. et al. Wiedemann-Beckwith syndrome: Presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum. Genet. 74, 143–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Brice, A.L., Cheetham, J.E., Bolton, V.N., Hill, N.C.W. & Schofield, P.N. Temporal changes in the expression of the insulin-like growth factor II gene associated with tissue maturation in the human fetus. Development 106, 543–554 (1989).

    CAS  PubMed  Google Scholar 

  16. Han, V.K.M., Lund, P.K., Lee, D.C. & DéErcole, A.J. Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: Identification, characterization, and tissue distribution. J. Clin. Endocrinol Metab. 66, 422–429 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Henry, I. et al. Somatic mosaicism for partial paternal isodisomy in Wiedemann-Beckwith syndrome: A post-fertilisation event. Eur. J. Hum. Genet. 1, 19–29 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Brown, K.W. et al. Paternal origin of llp15 duplications in the Beckwith-Wiedemann syndrome. Cancer Genet. Cytogenet. 58, 66–70 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Grundy, P. et al. Chromosome 11 uniparental isodisomy predisposing to embryonal neoplasms. Lancet 338, 1079–1080 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Mannens, M. et al. Parental imprinting of human chromosome region lip 15.3-pter involved in the Beckwith-Wiedemann syndrome and various human neoplasia. Eur. J. Hum. Genet. 2, 3–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto, T. et al. Molecular analysis of a patient with Beckwith-Wiedemann syndrome, rhabdomyosarcoma and renal cell carcinoma. Jpn. J. Hum. Genet. 39, 225–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Steenman, M.J.C. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet. 7, 433–439 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet. 7, 440–447 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Taniguchi, T., Sullivan, M.J., Ogawa, O. & Reeve, A.E. Epigenetic changes encompassing the IGF2/H19 locus associated with relaxation of IGF2 imprinting and silencing of H19 in Wilms tumor. Proc. Natl. Acad. Sci. USA 92, 2159–2163 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ogawa, O. et al. Constitutional relaxation of insulin-like growth factor II gene imprinting associated with Wilms' tumour and gigantism. Nature Genet. 5, 408–412 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Han, B.K. & Babcock, D.S. Sonographic measurements and appearance of normal kidneys in children. AJR 145, 611–616 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Dittrich, B. et al. Molecular diagnosis of the Prader-Willi and Angelman syndromesbydetectionof parent-of-origin specificDNAmethylationin 15qll-13. Hum. Genet. 90, 313–315 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Tadokoro, K., Fujii, H., Inoue, T. & Yamada, M. Polymerase chain reaction (PCR) for detection of Apal polymorphism at the insulin like growth factor II gene (IGF2). Nucleic Adds Res. 19, 6967 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gloudemans, T. et al. An Avall restriction fragment length polymorphism in the insulin-like growth factor II gene and the occurrence of smooth muscle tumors. Cancer Res. 53, 5754–5758 (1993).

    CAS  PubMed  Google Scholar 

  30. Reik, W. et al. Allelic methylation of H19 and IGF2 in the Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 3, 1297–1301 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Edwards, A., Civitello, A., Hammond, H.A. & Caskey, C.T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet. 49, 746–756 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beckwith, J.B. & Palmer, N.F. Histopathology and prognosis of Wilms tumour. Results from the first National Wilms' Tumor Study. Cancer 41, 1937–1948 (1978).

    Article  CAS  PubMed  Google Scholar 

  33. Bove, K.E. & McAdams, A.J. The nephroblastomatosis complex and its relationship to Wilms tumour: A clinicopathological treatise. Perspect. Pediatr. Pathol. 3, 185–223 (1976).

    CAS  PubMed  Google Scholar 

  34. Elliott, M. & Maher, E.R. Beckwith-Wiedemann syndrome. J. Med. Genet. 31, 560–564 (1994).

    CAS  Google Scholar 

  35. Giannoukakis, N. et al. Abstract. Am. J. Hum. Genet. 55 (suppl) 323 (1994).

  36. Henry, I. et al. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature 351, 665–667 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Chao, L.-Y. et al. Genetic mosaicism in normal tissues of Wilms' tumour patients. Nature Genet. 3, 127–131 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Henry, I. et al. Molecular definition of the llp15.5 region involved in Beckwith-Wiedemann syndrome and probably in predisposition to adrenocortical carcinoma. Hum. Genet. 81, 273–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  39. Turleau, C. & de Grouchy, J. Beckwith-Wiedemann syndrome: Clinical comparison between patients with and without 11p15 trisomy. Ann. Genet. 28, 93–96 (1985).

    CAS  PubMed  Google Scholar 

  40. Waziri, M., Patil, S.R., Hanson, J.W. & Bartley, J.A. Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J. Pediatr. 102, 873–876 (1983).

    Article  CAS  PubMed  Google Scholar 

  41. Reik, W. et al. Imprinting mutations in the Beckwith-Wiedemann syndrome suggested by an altered imprinting pattern in the IGF2-H19 domain. Hum. Mol. Genet. 4, 2379–2385 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Niikawa, N. et al. The Wiedemann-Beckwith syndrome: Pedigree studies on five families with evidence for autosomal dominant inheritance with variable expressivity. Am. J. Med. Genet. 24, 41–55 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Aleck, K.A. & Hadro, T.A. Dominant inheritance of Wiedemann-Beckwith syndrome: further evidence for transmission of “unstable premutation” through carrier women. Am. J. Med. Genet. 33, 155–160 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Nordenskjold, A., Hedborg, F., Luthman, H. & Nordenskjold, M. Tight linkage between the Beckwith-Wiedemann syndrome and a microsatellite marker for the TH locus. Hum. Genet. 92, 296–298 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Sotelo-Avila, C., Gonzalez-Crussi, G. & Fowler, J.W. Complete and incomplete forms of Beckwith-Wiedemann syndrome: Their oncogenic potential. J. Pediatr. 96, 47–50 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Christofori, G., Naik, P. & Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 369, 414–418 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Drut, R. & Jones, M.C. Congenital pancreatoblastoma in Beckwith-Wiedemann syndrome: An emerging association. Pediatr. Pathol. 8, 331–339 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Sara, V.R. & Hall, K. Insulin-like growth factors and their binding proteins. Physiol. Rev. 70, 591–614 (1990).

    Article  CAS  PubMed  Google Scholar 

  49. Harrington, E.A., Bennett, M.E., Fanidi, A. & Evan, G.I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBOJ. 13, 3286–3295 (1994).

    Article  CAS  Google Scholar 

  50. Coles, H.S., Burne, J.F. & Raff, M.C. Large-scale normal cell death in the developing rat kidney and its reduction by epidermal growth factor. Development 118, 777–784 (1993).

    CAS  PubMed  Google Scholar 

  51. Witte, D. & Bove, K. Beckwith-Wiedemann syndrome and the insulin-like growth factor-II gene. Does the genotype explain the phenotype? Am. J. Pathol. 145, 762–765 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Romero, R., Pilu, G., Jeanty, P., Ghidini, A. & Hobbins, J.C. ., eds. Prenatal Diagnosis of Congenital Anomalies (Appleton & Lange, Norwalk, Connecticut, 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morison, I., Becroft, D., Taniguchi, T. et al. Somatic overgrowth associated with overexpression of insulin–like growth factor II. Nat Med 2, 311–316 (1996). https://doi.org/10.1038/nm0396-311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0396-311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing