Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers

Abstract

Only a small proportion of cancers result from familial cancer syndromes with Mendelian inheritance. Nonfamilial, 'sporadic' cancers, which represent most cancer cases, also have a significant hereditary component1,2, but the genes involved have low penetrance and are extremely difficult to detect2,3. Therefore, mapping and cloning of quantitative trait loci (QTLs) for cancer susceptibility in animals could help identify homologous genes in humans. Several cancer-susceptibility QTLs have been mapped in mice and rats4,5, but none have been cloned so far. Here we report the positional cloning of the mouse gene Scc1 (Susceptibility to colon cancer 1)6 and the identification of Ptprj, encoding a receptor-type protein tyrosine phosphatase, as the underlying gene. In human colon, lung and breast cancers, we show frequent deletion of PTPRJ, allelic imbalance in loss of heterozygosity (LOH) and missense mutations. Our data suggest that PTPRJ is relevant to the development of several different human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant haplotype mapping of Scc1.
Figure 2: Physical, genetic and transcript map of Scc1 region.
Figure 3: Scc1 loss in human colorectal cancer.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  Google Scholar 

  2. Ponder, B.A. Cancer genetics. Nature 411, 336–341 (2001).

    Article  CAS  Google Scholar 

  3. Weiss, K.M. & Terwilliger, J.D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  Google Scholar 

  4. Balmain, A. & Nagase, H. Cancer resistance genes in mice: models for the study of tumour modifiers. Trends Genet. 14, 139–144 (1998).

    Article  CAS  Google Scholar 

  5. van Wezel, T., Lipoldova, M. & Demant, P. in Genotype to Phenotype (eds Malcolm, S. & Goodship, S.) 107–129 (BIOS Scientific Publishers, Oxford, 2001).

    Google Scholar 

  6. Moen, C.J., Groot, P.C., Hart, A.A., Snoek, M. & Demant, P. Fine mapping of colon tumor susceptibility (Scc) genes in the mouse, different from the genes known to be somatically mutated in colon cancer. Proc. Natl Acad. Sci. USA 93, 1082–1086 (1996).

    Article  CAS  Google Scholar 

  7. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  8. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  9. Keane, M.M., Lowrey, G.A., Ettenberg, S.A., Dayton, M.A. & Lipkowitz, S. The protein tyrosine phosphatase DEP-1 is induced during differentiation and inhibits growth of breast cancer cells. Cancer Res. 56, 4236–4243 (1996).

    CAS  PubMed  Google Scholar 

  10. Trapasso, F. et al. Rat protein tyrosine phosphatase η suppresses the neoplastic phenotype of retrovirally transformed thyroid cells through the stabilization of p27(Kip1). Mol. Cell. Biol. 20, 9236–9246 (2000).

    Article  CAS  Google Scholar 

  11. Kuramochi, S. et al. Molecular cloning and characterization of Byp, a murine receptor-type tyrosine phosphatase similar to human DEP-1. FEBS Lett. 378, 7–14 (1996).

    Article  CAS  Google Scholar 

  12. Autschbach, F. et al. Expression of the membrane protein tyrosine phosphatase CD148 in human tissues. Tissue Antigens 54, 485–498 (1999).

    Article  CAS  Google Scholar 

  13. Anastasiadis, P.Z. & Reynolds, A.B. The p120 catenin family: complex roles in adhesion, signaling and cancer. J. Cell Sci. 113, 1319–1334 (2000).

    CAS  Google Scholar 

  14. Wielenga, V.J., van der Neut, R., Offerhaus, G.J. & Pals, S.T. CD44 glycoproteins in colorectal cancer: expression, function, and prognostic value. Adv. Cancer Res. 77, 169–187 (2000).

    Article  CAS  Google Scholar 

  15. Honda, H., Inazawa, J., Nishida, J., Yazaki, Y. & Hirai, H. Molecular cloning, characterization, and chromosomal localization of a novel protein-tyrosine phosphatase, HPTP η. Blood 84, 4186–4194 (1994).

    CAS  PubMed  Google Scholar 

  16. Ostman, A., Yang, Q. & Tonks, N.K. Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc. Natl Acad. Sci. USA 91, 9680–9684 (1994).

    Article  CAS  Google Scholar 

  17. Pietenpol, J.A. et al. Assignment of the human p27Kip1 gene to 12p13 and its analysis in leukemias. Cancer Res. 55, 1206–1210 (1995).

    CAS  PubMed  Google Scholar 

  18. Fero, M.L., Randel, E., Gurley, K.E., Roberts, J.M. & Kemp, C.J. The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396, 177–180 (1998).

    Article  CAS  Google Scholar 

  19. Krimpenfort, P., Quon, K.C., Mooi, W.J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  Google Scholar 

  20. Kwabi-Addo, B. et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc. Natl Acad. Sci. USA 98, 11563–11568 (2001).

    Article  CAS  Google Scholar 

  21. Inoue, K. et al. Disruption of the ARF transcriptional activator DMP1 facilitates cell immortalization, Ras transformation, and tumorigenesis. Genes Dev. 14, 1797–1809 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rhodes, M. et al. A high-resolution microsatellite map of the mouse genome. Genome Res. 8, 531–542 (1998).

    Article  CAS  Google Scholar 

  23. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18, 2887–2890 (1990).

    Article  CAS  Google Scholar 

  24. Florijn, R.J. et al. High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Hum. Mol. Genet. 4, 831–836 (1995).

    Article  CAS  Google Scholar 

  25. Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  PubMed  Google Scholar 

  26. Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

    Article  CAS  Google Scholar 

  27. Dib, C. et al. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996).

    Article  CAS  Google Scholar 

  28. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  29. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  30. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Theodorou, E. Dijsselbloem, E. Anthony and M. Treur for technical assistance; J. de Moes, E. Delzenne-Goette and M. Timpico for help with breeding, tumor induction and autopsies; A. Berns, M. Snoek, J. Jonkers, H. Mikkers and A. Cleton-Jansen for helpful comments on the manuscript; E. Robanus for the human BAC filters; R. Pruntel for all the ABI runs; and S. Banus and H. van Kranen for their help with pyrosequencing. This work was supported by grants from the Dutch Cancer Society and the Dutch Basic Research Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Demant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruivenkamp, C., van Wezel, T., Zanon, C. et al. Ptprj is a candidate for the mouse colon-cancer susceptibility locus Scc1 and is frequently deleted in human cancers. Nat Genet 31, 295–300 (2002). https://doi.org/10.1038/ng903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing