Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele

Abstract

The IDDM2 type 1 diabetes susceptibility locus was mapped to1–6 and identified as7 allelic variation at the insulin gene (INS) VNTR regulatory polymorphism. In Caucasians, INS VNTR alleles divide into two discrete size classes1. Class I alleles (26 to 63 repeats) predispose in a recessive way to type 1 diabetes, while class III alleles (140 to more than 200 repeats) are dominantly protective8. The protective effect may be explained by higher levels of class III VNTR-associated INS mRNA in thymus such that elevated levels of preproinsulin protein enhance immune tolerance to preproinsulin, a key autoantigen in type 1 diabetes pathogenesis9,10. The mode of action of IDDM2 is complicated, however, by parent-of-origin effects2,7,11–14 and possible allelic heterogeneity within the two defined allele classes7,15. We have now analysed transmission of specific VNTR alleles in 1,316 families and demonstrate that a particular class I allele does not predispose to disease when paternally inherited, suggestive of polymorphic imprinting16. But this paternal effect is observed only when the father's untransmitted allele is a class III. This allelic interaction is reminiscent of epigenetic phenomena observed in plants (for example, paramutation; ref. 17) and in yeast (for example, frans-inactivation; ref. 18). If untransmitted chromosomes can have functional effects on the biological properties of transmitted chromosomes, the implications for human genetics and disease are potentially considerable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bell, G.I., Horita, S. & Karam, J.H. A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33, 176–183 (1984).

    Article  CAS  Google Scholar 

  2. Julier, C. et al. lnsulin-IGF2 region on chromosome 11p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  Google Scholar 

  3. Lucassen, A.M. et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DMA spanning the insulin gene and associated VNTR. Nature Genet. 4, 305–310 (1993).

    Article  CAS  Google Scholar 

  4. Owerbach, D. & Gabbay, K.H. Localization of a type 1 diabetes susceptibility locus to the variable tandem repeat region flanking the insulin gene. Diabetes. 42, 1708–1714 (1993).

    Article  CAS  Google Scholar 

  5. Julier, C. et al. Multiple DNA variant association analysis: application to the insulin gene region in type 1 diabetes. Am. J. Hum. Genet. 55, 1247–1254 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Undlien, D.E. et al. Insulin gene region-encoded susceptibility to IDDM maps upstream of the insulin gene. Diabetes 44, 620–625 (1995).

    Article  CAS  Google Scholar 

  7. Bennett, S.T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genet. 9, 284–292 (1995).

    Article  CAS  Google Scholar 

  8. Bennett, S.T. & Todd, J.A. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu. Rev. Genet. 30, 343–370 (1996).

    Article  CAS  Google Scholar 

  9. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nature Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  10. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-/DDM2 susceptibility locus for type 1 diabetes. Nature Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  11. Pugliese, A., Awdeh, Z.L., Alper, C.A., Jackson, R.A. & Eisenbarth, G.S. The paternally inherited insulin gene B allele (1,428 Fokl site) confers protection from insulin-dependent diabetes in families. J. Autoimmun. 7, 687–694 (1994).

    Article  CAS  Google Scholar 

  12. PoJychronakos, C., Kukuvitis, A., Giannoukakis, N. & Colle, E. Parental imprinting effect at the INS-IGF2 diabetes susceptibility locus. Diabetologia 38, 715–719 (1995).

    Article  Google Scholar 

  13. Bui, M.M. et al. Paternally transmitted IDDM2 influences diabetes susceptibility despite biallelic expression of the insulin gene in human pancreas. J. Autoimmun. 9, 97–103 (1996).

    Article  CAS  Google Scholar 

  14. Bennett, S.T. et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J. Autoimmun. 9, 415–421 (1996).

    Article  CAS  Google Scholar 

  15. Bennett, S.T. et al. Insulin expression: is VNTR allele 698 really anomalous? (reply). Nature Genet. 10, 379–380 (1995).

    Article  CAS  Google Scholar 

  16. Xu, Y., Grundy, P. & Polychronakos, C. Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms' tumor. Oncogene 14, 1041–1046 (1997).

    Article  CAS  Google Scholar 

  17. Hollick, J., Dorweiler, J. & Chandler, V. Paramutation and related allelic interactions. Trends Genet. 13, 302–308 (1997).

    Article  CAS  Google Scholar 

  18. Grewal, S. & Klar, A. Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101 (1996).

    Article  CAS  Google Scholar 

  19. Todd, J.A. Genetic analysis of type 1 diabetes using whole genome approaches. Proc. Natl. Acad. Sci. USA 92, 8560–8565 (1995).

    Article  CAS  Google Scholar 

  20. Barlow, D.P. Gametic imprinting in mammals. Science 270, 1610–1613 (1995).

    Article  CAS  Google Scholar 

  21. Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nature Genet. 9, 12–13 (1995).

    Article  CAS  Google Scholar 

  22. LaSalle, J. & Lalande, M. Homologous association of oppositely imprinted chromosomal domains. Science 272, 725–728 (1996).

    Article  CAS  Google Scholar 

  23. Xu, Y., Goodyer, C., Deal, C. & Polychronakos, C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem. Biophys. Res. Commun. 197, 747–754 (1993).

    Article  CAS  Google Scholar 

  24. Smrzka, O. et al. Conservation of a maternal-specific methylation signal at the human IGF2R locus. Hum. Mol. Genet. 4, 1945–1952 (1995).

    Article  CAS  Google Scholar 

  25. Giannoukakis, N., Polychronakos, C., Vafiadis, P., Paquette, J. & Deal, C. The INS 5′ VNTR is associated with IGF2 expression in humans. J. Biol. Chem. (in the press).

  26. Livak, K.J., Marmaro, J. & Todd, J.A. Towards fully automated genome-wide polymorphism screening. Nature Genet. 9, 341–342 (1995).

    Article  CAS  Google Scholar 

  27. Bennett, S.T., Lucassen, A.M. & Todd, J.A., in PCR: Essential Techniques (ed. Burke, J.F.) 32–33 (John Wiley & Sons, Chichester, UK, 1996).

    Google Scholar 

  28. Bell, G.I., Seiby, M.J. & Rutter, W.J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295, 31–35 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Simon T. Bennett or John A. Todd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, S., Wilson, A., Esposito, L. et al. Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nat Genet 17, 350–352 (1997). https://doi.org/10.1038/ng1197-350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1197-350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing