Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland

Abstract

Celiac disease is a strongly heritable gastrointestinal illness that is an especially important model of the genetically complex multifactorial immune-mediated diseases1. The HLA component of celiac disease (a specific HLA-DQ heterodimer)is largely established and is relatively uncomplicated2,3, and the environmental component (gluten and related grain storage proteins in the diet) is remarkably well understood4. Previous family studies of celiac disease5–8 suggested that there is at least one important non-HLA locus. This locus may be a stronger genetic factor than HLA7, and it apparently has a recessive mode of inheritance5,6,8. We used a three-step genome screening protocol to identify loci that contribute to celiac disease in the western counties of Ireland, a region with the highest prevalence of celiac disease in the world9. The most significant of several possible non-HLA loci that we found was on chromosome 6p about 30 cM telomeric from HLA. It has a multipoint maximum lod score of 4.66 (compared with 4.44 for HLA-DQ) and appears to have a recessive mode of inheritance. Our study localizes and provides strong evidence for linkage of at least one non-HLA locus to celiac disease and may serve as a prototype for an efficient approach to screening the human genome for loci that contribute to complex diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michalski, J.P. & McCombs, C.C., Celiac Disease: Clinical features and pathogenesis. Am. J. Med. Sci. 307, 204–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Sollid, L.M., Markussen, G., Ek, V., Gjerde, H.G., Vartdal, F. & Thorsby, E. Evidence for a primary association of coeliac disease to a particular HLA-DQ α–β heterodimer. J. Exp. Med. 169, 345–350 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Michalski, J.P. et al. HLA-DR,DQ genotypes of celiac disease patients and healthy subjects from the West of Ireland. Tissue Antigens 47, 127–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Marsh, M.N., Gluten, major histocompatiblity complex, and the small intestine. Gastroenterology 102, 330–354 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Peña, A.S. et al. Genetic basis of gluten-sensitive enteropathy. Gastroenterology 75, 230–235 (1978).

    PubMed  Google Scholar 

  6. Greenberg, D.A. & Rotter, J.I. Two locus models for gluten sensitive enteropathy: Population genetic considerations. Am. J. Med. Genet. 8, 205–214 (1981).

    Article  PubMed  Google Scholar 

  7. Risch, N. Assessing the role of HLA-linked and unlinked determinants of disease. Am. J. Hum. Genet. 40, 1–14 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hernandez, J.L. et al. Evidence for a dominant gene mechanism underlying coeliac disease in the West of Ireland. Genet Epidemiol. 8, 13–27 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Mylotte, M.J., Eagan-Mitchell, B., McCarthy, C.F. & McNicholl, B. The incidence of coeliac disease in the West of Ireland. Br. Med. J. i, 703–705 (1973).

    Article  Google Scholar 

  10. Risch, N. Linkage strategies for genetically complex traits III. The effect of marker polymorphism on analysis of affected relative pairs. Am. J. Hum. Genet. 46, 242–253 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Elston, R.C., Guo, X., Williams, L.V. Two-stage global search designs for linkage analysis using pairs of affected relatives. Genet. Epidemiol. (in the press).

  12. Cordell, H.J., Todd, J.A., Bennett, S.T., Kawaguchi, Y. & Farrall, M. Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. Am. J. Hum. Genet. 57, 92–934 (1995).

    Google Scholar 

  13. Olson, J.M. Likelihood models for linkage analysis using affected sib pairs. Hum. Heredity (in the press).

  14. Greenberg, D.A., Hodge, S.E. & Rotter, J.I. Evidence for recessive and against dominant inheritance at the HLA-linked locus in celiac disease. Am. J. Hum. Genet. 34, 263–277 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davies, J.L. et al. A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Morton, N.E. et al. Heterozygous expression of insulin-dependent diabetes mellitus (IDDM) determinants in the HLA system. Am. J. Hum. Genet. 35, 201–213 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Todd, J.A. Genetic analysis of susceptibility to type 1 diabetes. Springer Semin. Immunopathol. 14, 33–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Field, L.L., Tobias, R. & Magnus, T. A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus. Nature Genet. 8, 189–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Julier, C. et al. lnsulin-IGF2 region on chromosome 11 p encodes a gene implicated in HLA DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Bain, S.C. et al. Insulin gene region-encoded susceptibility to type 1 diabetes is not restricted to HLA-DR4-positive individuals. Nature Genet. 2, 212–215.

    Article  CAS  PubMed  Google Scholar 

  21. Collin, P. et al. Coeliac disease associated disorders and survival. Gut 35, 1215–1218 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Page, S.R., Lloyd, C.A., Hill, P.G., Peacock, I. & Holmes, G.K. The prevalence of coeliac disease in adult diabetes mellitus. Q. J. Med. 87, 631–637 (1994).

    CAS  Google Scholar 

  23. Maki, M., Huupponen, T., Holm, K. & Hallstrom, O. Seroconversion of reticulin autoantibodies predicts coeliac disease in insulin dependent diabetes mellitus. Gut 36, 239–242 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kruglyak, L. & Lander, E. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am. J. Hum. Genet. 57, 439–454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Erlich, H.A. HLA class II sequences and genetic susceptibility to insulin dependent diabetes mellitus. Baillieres Clin. Endocrinol. Metab. 5, 395–411 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Polanco, I. et al. Gluten-sensitive enteropathy in Spain: genetic and environmental factors. in Genetics of Coeliac Disease, Proceedings of International Symposium 1979 (ed. McConnell, R. B. ) 221–231 (MTP Press, Lancaster, England, 1981).

    Google Scholar 

  27. Ciulla, T.A., Sklar, R.M. & Hauser, S.L. A simple method for DNA purification from peripheral blood. Anal. Biochem. 174, 485–488 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Sheffield, V.C. et al. A collection of tri-and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum. Mol. Genet. 4, 1837–1844 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Macaubas, C. et al. Extensive polymorphism of a (CA)n microsatellite located in the HLA-DQA1/DQB1 Class II region. Hum. Immunol. 42, 209–220 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Weber, J.L. & May, P.E. Abundant class of human DNA polymorphisms which can be typed in a polymerase chain reaction. Am. J. Hum. Genet. 44, 388–396 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Olerup, O. & Zetterquist, H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: An alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39, 225–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Bidwell, J.L., Bidwell, E.A. & Bradley, B.A. HLA class II genes: typing by DNA analysis. Bailliere's Clin. Haematol. 3, 355–383 (1990).

    Article  CAS  Google Scholar 

  34. Fasman, K.H., Cuticchia, A.J. & Kingsbury, D.T. The GBD (TM) Human Genome Data Base Anno. Nucl. Acids Res. 22, 3462–3469 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S.A.G.E. (1994): Statistical Analysis for Genetic Epidemiology. Release 2. 2. Computer program available from the Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA.

  36. Chumakov, I.M. et al. A YAC contig map of the human genome. Nature 377, 175–297 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, F., McCombs, C., Olson, J. et al. An autosomal screen for genes that predispose to celiac disease in the western counties of Ireland. Nat Genet 14, 329–333 (1996). https://doi.org/10.1038/ng1196-329

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1196-329

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing