Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The locus for Meckel syndrome with multiple congenital anomalies maps to chromosome 17q21–q24

Abstract

Autosomal recessive Meckel syndrome (OMIM 249000) (MES), first described in 1822 by Johann F. Meckel1, is a major monogenic malformation syndrome with a neural tube defect leading to death of the fetus in utero or shortly after birth. The hallmarks of the syndrome are occipital meningo-encephalocele, very large kidneys with multicystic dysplasia, cystic and fibrotic changes of the liver and polydactyly2,3 (Fig. 1). Other typical malformations for MES are cleft lip and palate, urinary tract anomalies, ambiguous genitals in the males and club feet. Although MES has been reported worldwide, reports on the true birth prevalence of MES in different populations are scarce. In Finland MES is effectively screened and relatively frequent with a birth prevalence of 1:9,000 and a disease gene frequency of 0.01 (ref. 4) which is of the same order of magnitude as that of the most common recessive diseases belonging to the ‘Finnish disease heritage’, that is genetic disorders enriched or only encountered in Finland. However, in MES, comparable or even higher incidences are also reported from other populations4–6. Here, we report the assignment of the MES locus to chromosome 17q21–q24 in the 13 cM region, and exclude some of the potential candidate genes located in this critical chromosomal region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Meckel, J.F. Beschreibung zweier, durch sehr ähnliche Bildungsabweichungen entstellter Geschwister. Dtsch. Arch. Physiol. 7, 99–172 (1822).

    Google Scholar 

  2. Mecke, S. & Passarge, E. Encephalocele, polycystic kidneys, and polydactyly as an autosomal recessive trait simulating certain other disorders: the Meckel syndrome. Ann. Génét. 14, 97–103 (1971).

    CAS  PubMed  Google Scholar 

  3. Salonen, R. The Meckel syndrome: clinicopathological findings in 67 patients. Am. J. med. Genet. 18, 671–689 (1984).

    Article  CAS  Google Scholar 

  4. Salonen, R. & Norio, R. The Meckel's syndrome in Finland; epidemiologic and genetic aspects. Am. J. med. Genet. 18, 691–698 (1984).

    Article  CAS  Google Scholar 

  5. Young, I.D., Rickett, A.B. & Clarke, M. High incidence of Meckel's syndrome in Gujarati Indians. J. med. Genet. 22, 301–304 (1985).

    Article  CAS  Google Scholar 

  6. Teebi, A.S., Al-Saleh, Q.A. & Odeh, H. Meckel syndrome and neural tube defects in Kuwait. J. med. Genet. 29, 140 (1992).

    Article  CAS  Google Scholar 

  7. Polymeropoulos, M.H., Rath, D.S., Xiao, H. & Merril, C.R. A simple sequence repeat polymorphism at the human growth hormone locus. Nucl. Acids Res. 19, 689 (1991).

    Article  CAS  Google Scholar 

  8. Ott, J. Analysis of Human Genetic Linkage rev. edn. 203–216 (Johns Hopkins Univ. Press, Baltimore, 1991).

    Google Scholar 

  9. Savukoski, M. et al. Defined chromosomal assignment of CLN5 demonstrates that at least four genetic loci are involved in the pathogenesis of human ceroid lipofuscinoses. Am. J. hum. Genet. 55, 695–701 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Schleutker, J. et al. Linkage disequilibrium utilized to establish a refined genetic position of the Salla disease locus on 6q14–q15. Genomics 27, 286–292 (1995).

    Article  CAS  Google Scholar 

  11. Phillips, J.A. III & Cogan, J.D. Genetic basis of endocrine disease 6: molecular basis of familial human growth hormone deficiency. J. Clin. Endocr. Metab. 78, 11–16 (1994).

    CAS  PubMed  Google Scholar 

  12. Gilbert, S.F. Developmental Biology, 3rd edn. (Sinauer Associates, Inc., Sunderland, Massachusetts, 1991).

    Google Scholar 

  13. Kaur, S. et al. Dominant mutation of the murine Hox-2.2 gene results in developmental abnormalities. J. exp. Zool. 264, 323–336 (1992).

    Article  CAS  Google Scholar 

  14. Charité, J., de Graaff, W., Shen, S. & Deschamps, J. Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 78, 589–601 (1994).

    Article  Google Scholar 

  15. Munke, M., Cox, D.R., Jackson, I.J., Hogan, B.L.M. & Francke, U. The murine Hox-2 cluster of homeo box containing genes maps distal on chromosome 11 near the tail-short (Ts) locus. Cytogenet. Cell Genet. 42, 236–240 (1986).

    Article  CAS  Google Scholar 

  16. Winter, R.M. Malformation syndromes: a review of mouse/human homology. J. med. Genet. 25, 480–487 (1988).

    Article  CAS  Google Scholar 

  17. Deinard, A.S., Ruano, G. & Kidd, K.K. A dinucleotide repeat polymorphism at the HOX2B locus. Nucl. Acids Res. 20, 1171 (1992).

    Article  CAS  Google Scholar 

  18. Wilhelmsen, K.C., Lynch, T., Pavlou, E., Higgins, M. & Nygaard, T.G. Localization of disinhibition-dementia-parkinsonism-amyotrophy complex to 17q21–22. Am. J. hum. Genet. 55, 1159–1165 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, L.A. et al. High-density genetic map of the BRCA1 region of chromosome 17q12–q21. Genomics 17, 618–623 (1993).

    Article  CAS  Google Scholar 

  20. Haines, J.L. et al. A genetic linkage map of chromosome 17. Genomics 8, 1–6 (1990).

    Article  CAS  Google Scholar 

  21. Bentley, K.L., Ferguson-Smith, A.C., Miki, T., Kidd, K.K. & Ruddle, F.H. Physical linkage of Hox2.1 and nerve growth factor receptor. Cytogenet. Cell Genet. 51, A961 (1989).

    Google Scholar 

  22. Stoffel, M. & Bell, G.I. Microsatellite polymorphism in the human platelet glycoprotein Ilia gene (GP3A) on chromosome 17. Nucl. Acids Res. 20, 1172 (1992).

    Article  CAS  Google Scholar 

  23. Polymeropoulos, M.H., Xiao, H., Rath, D.S. & Merril, C.R. Dinucleotide repeat polymorphism at the human gene of the light and heavy chains of myeloperoxidase glycoprotein (MPO). Nucl. Acids Res. 19, 1961 (1991).

    PubMed  Google Scholar 

  24. Patau, K. et al. Multiple congenital anomaly caused by an extra chromosome. Lancet 1, 790 (1960).

    Article  CAS  Google Scholar 

  25. Aaltonen, J. et al. Autoimmune polyglandular disease type I: exclusion map using amplifiable multiallelic markers in a microtiter well format. Eur. J. hum. Genet. 1, 164–171 (1993).

    Article  CAS  Google Scholar 

  26. Lathrop, G.M., Lalouel, J.-M., Julier, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. natn. Acad. Sci. U.S.A. 81, 3443–3446 (1984).

    Article  CAS  Google Scholar 

  27. Terwilliger, J.D. A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. hum. Genet. 56, 777–787 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wright, C., Healicon, R., English, C. & Burn, J. Meckel syndrome: what are the minimum diagnostic criteria?. J. med. Genet. 31, 482–485 (1994).

    Article  CAS  Google Scholar 

  29. Guapay, G. et al. The 1993–94 Généthon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paavola, P., Salonen, R., Weissenbach, J. et al. The locus for Meckel syndrome with multiple congenital anomalies maps to chromosome 17q21–q24. Nat Genet 11, 213–215 (1995). https://doi.org/10.1038/ng1095-213

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1095-213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing