Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease

Abstract

Association studies offer a potentially powerful approach to identify genetic variants that influence susceptibility to common disease1,2,3,4, but are plagued by the impression that they are not consistently reproducible5,6. In principle, the inconsistency may be due to false positive studies, false negative studies or true variability in association among different populations4,5,6,7,8. The critical question is whether false positives overwhelmingly explain the inconsistency. We analyzed 301 published studies covering 25 different reported associations. There was a large excess of studies replicating the first positive reports, inconsistent with the hypothesis of no true positive associations (P < 10−14). This excess of replications could not be reasonably explained by publication bias and was concentrated among 11 of the 25 associations. For 8 of these 11 associations, pooled analysis of follow-up studies yielded statistically significant replication of the first report, with modest estimated genetic effects. Thus, a sizable fraction (but under half) of reported associations have strong evidence of replication; for these, false negative, underpowered studies probably contribute to inconsistent replication. We conclude that there are probably many common variants in the human genome with modest but real effects on common disease risk, and that studies using large samples will convincingly identify such variants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Funnel plot analysis to detect publication bias.

Similar content being viewed by others

References

  1. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  Google Scholar 

  2. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  CAS  Google Scholar 

  3. Collins, F.S., Guyer, M.S. & Charkravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580–1581 (1997).

    Article  CAS  Google Scholar 

  4. Risch, N.J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  Google Scholar 

  5. Freely associating. Nat. Genet. 22, 1–2 (1999).

  6. Cardon, L.R. & Bell, J.I. Association study designs for complex diseases. Nat. Rev. Genet. 2, 91–99 (2001).

    Article  CAS  Google Scholar 

  7. Altshuler, D., Kruglyak, L. & Lander, E. Genetic polymorphisms and disease. N. Engl. J. Med. 338, 1626 (1998).

    Article  CAS  Google Scholar 

  8. Tabor, H.K., Risch, N.J. & Myers, R.M. Opinion: candidate-gene approaches for studying complex genetic traits: practical considerations. Nat. Rev. Genet. 3, 391–397 (2002).

    Article  CAS  Google Scholar 

  9. Hirschhorn, J.N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    Article  CAS  Google Scholar 

  10. Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    Article  CAS  Google Scholar 

  11. Ioannidis, J.P., Ntzani, E.E., Trikalinos, T.A. & Contopoulos-Ioannidis, D.G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  12. Goring, H.H., Terwilliger, J.D. & Blangero, J. Large upward bias in estimation of locus-specific effects from genome-wide scans. Am. J. Hum. Genet. 69, 1357–1369 (2001).

    Article  CAS  Google Scholar 

  13. Bazerman, M.H. & Samuelson, W.F. I won the auction but don't want the prize. J. Conflict Resolut. 27, 618–634 (1983).

    Article  Google Scholar 

  14. Hirschhorn, J.N. & Altshuler, D. Once and again—issues surrounding replication in genetic association studies. J. Clin. Endocrinol. Metab. 87, 4438–4441 (2002).

    Article  CAS  Google Scholar 

  15. Reis, I.M., Hirji, K.F. & Afifi, A.A. Exact and asymptotic tests for homogeneity in several 2 × 2 tables. Stat. Med. 18, 893–906 (1999).

    Article  CAS  Google Scholar 

  16. Breslow, N.E. & Day, N.E. Statistical Methods in Cancer Research: 1. The Analysis of Case–Control Studies (International Agency for Research on Cancer, Lyon, 1980).

    Google Scholar 

  17. Robins, J., Breslow, N. & Greenland, S. Estimators of the Mantel–Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 42, 311–323 (1986).

    Article  CAS  Google Scholar 

  18. Stram, D.O. Meta-analysis of published data using a linear mixed-effects model. Biometrics 52, 536–544 (1996).

    Article  CAS  Google Scholar 

  19. Inoue, H. et al. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. Diabetes 45, 825–831 (1996).

    Article  CAS  Google Scholar 

  20. Cusi, D. et al. Polymorphisms of α-adducin and salt sensitivity in patients with essential hypertension. Lancet 349, 1353–1357 (1997).

    Article  CAS  Google Scholar 

  21. Harrington, C.R., Roth, M., Xuereb, J.H., McKenna, P.J. & Wischik, C.M. Apolipoprotein E type epsilon 4 allele frequency is increased in patients with schizophrenia. Neurosci. Lett. 202, 101–104 (1995).

    Article  CAS  Google Scholar 

  22. Montoya, S.E. et al. Bleomycin hydrolase is associated with risk of sporadic Alzheimer's disease. Nat. Genet. 18, 211–212 (1998).

    Article  CAS  Google Scholar 

  23. Grant, S.F. et al. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat. Genet. 14, 203–205 (1996).

    Article  CAS  Google Scholar 

  24. Li, T. et al. Catechol-O-methyltransferase Val158Met polymorphism: frequency analysis in Han Chinese subjects and allelic association of the low activity allele with bipolar affective disorder. Pharmacogenetics 7, 349–353 (1997).

    Article  CAS  Google Scholar 

  25. Li, T. et al. Preferential transmission of the high-activity allele of COMT in schizophrenia. Psychiatr. Genet. 6, 131–133 (1996).

    Article  CAS  Google Scholar 

  26. Nistico, L. et al. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum. Mol. Genet. 5, 1075–1080 (1996).

    Article  CAS  Google Scholar 

  27. Arinami, T., Gao, M., Hamaguchi, H. & Toru, M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet. 6, 577–582 (1997).

    Article  CAS  Google Scholar 

  28. Crocq, M.A. et al. Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J. Med. Genet. 29, 858–860 (1992).

    Article  CAS  Google Scholar 

  29. Helzlsouer, K.J. et al. Association between glutathione S-transferase M1, P1, and T1 genetic polymorphisms and development of breast cancer. J. Natl. Cancer Inst. 90, 512–518 (1998).

    Article  CAS  Google Scholar 

  30. Trizna, Z., Clayman, G.L., Spitz, M.R., Briggs, K.L. & Goepfert, H. Glutathione S-transferase genotypes as risk factors for head and neck cancer. Am. J. Surg. 170, 499–501 (1995).

    Article  CAS  Google Scholar 

  31. Groop, L.C. et al. Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 328, 10–14 (1993).

    Article  CAS  Google Scholar 

  32. Inayama, Y. et al. Positive association between a DNA sequence variant in the serotonin 2A receptor gene and schizophrenia. Am. J. Med. Genet. 67, 103–105 (1996).

    Article  CAS  Google Scholar 

  33. Galton, D.J. & Trembath, R.C. Genetic variants of the insulin receptor in type II (non-insulin dependent) diabetes mellitus. Biomed. Biochim. Acta 47, 323–327 (1988).

    CAS  Google Scholar 

  34. t'Hart, L.M. et al. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: a population-based study. Am. J. Hum. Genet. 59, 1119–1125 (1996).

    CAS  Google Scholar 

  35. Hani, E.H. et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. Diabetologia 41, 1511–1515 (1998).

    Article  CAS  Google Scholar 

  36. Nanko, S. et al. Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr. Scand. 89, 390–392 (1994).

    Article  CAS  Google Scholar 

  37. Serrato, M. & Marian, A.J. A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J. Clin. Invest. 96, 3005–3008 (1995).

    Article  CAS  Google Scholar 

  38. Deeb, S.S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 20, 284–287 (1998).

    Article  CAS  Google Scholar 

  39. Eriksson, P., Kallin, B., van 't Hooft, F.M., Bavenholm, P. & Hamsten, A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc. Natl. Acad. Sci. USA 92, 1851–1855 (1995).

    Article  CAS  Google Scholar 

  40. Li, S.R., Baroni, M.G., Oelbaum, R.S., Stock, J. & Galton, D.J. Association of genetic variant of the glucose transporter with non-insulin-dependent diabetes mellitus. Lancet 2, 368–370 (1988).

    Article  CAS  Google Scholar 

  41. Alcolado, J.C., Baroni, M.G. & Li, S.R. Association between a restriction fragment length polymorphism at the liver/islet cell (GluT 2) glucose transporter and familial type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 34, 734–736 (1991).

    Article  CAS  Google Scholar 

  42. Bellivier, F. et al. Association between the tryptophan hydroxylase gene and manic-depressive illness. Arch. Gen. Psychiatry 55, 33–37 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Byrne for help in obtaining manuscripts and D. Stram for help with analysis. J.N.H. is the recipient of a Burroughs Wellcome Career Award in Biomedical Sciences. This work was supported in part by research grants from Bristol-Myers Squibb, Millennium Pharmaceuticals and Affymetrix to E.S.L. and by the University of Southern California/Norris Comprehensive Cancer Center Core Grant from the US National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel N. Hirschhorn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohmueller, K., Pearce, C., Pike, M. et al. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33, 177–182 (2003). https://doi.org/10.1038/ng1071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing