Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons

Abstract

Angelman syndrome (AS) is a human genetic disorder characterized by mental retardation, seizures, inappropriate laughter, abnormal gait, tremor and ataxia1–3. There is strong genetic evidence that the disorder is associated with a maternally expressed, imprinted gene mapping to chromosome 15q11–13. Affected patients demonstrate varied molecular abnormalities including large maternal deletions, uniparental paternal disomy (UPD), imprinting mutations4 and loss of function mutations of E6–associated-protein (E6-AP) ubiquitin–protein ligase (UBE3A)5,6. All of these abnormalities are associated with loss of maternal expression of UBE3A. Although mutations in UBE3A cause AS, indicating that maternal-specific expression of UBE3A is essential for a normal phenotype, evidence for maternal-specific expression of UBE3A has been lacking7,8. Using mice with partial paternal UPD encompassing Ube3a to differentiate maternal and paternal expression, we found by in situ hybridization that expression of Ube3a in Purkinje cells, hippocampal neurons and mitral cells of the olfactory bulb in UPD mice was markedly reduced compared to non-UPD littermates. In contrast, expression of Ube3a in other regions of the brain was only moderately or not at all reduced in UPD mice. The major phenotypic features of AS correlate with the loss of maternal-specific expression of Ube3a in hippocampus and cerebellum as revealed in the mouse model.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Nicholls, R.D. New insights reveal complex mechanisms involved in genomic imprinting. Am. J. Hum. Genet. 54, 733–740 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ledbetter, D.H., Ballabio, A. Molecular cytogenetics of contiguous gene syndromes: mechanisms and consequences of gene dosage imbalance. in The Metabolic and Molecular Bases of Inherited Disease, 7th ed. (eds Scriver, C.R., Beaudet, A.L., Sly, W.S. & Valle, D.) 811–839 (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. Williams, C.A. et al. Angelman syndrome. Curr. Probl. Pediatr. 25, 216–231 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Matsuura, T. et al. De novo truncating mutations in E6-AP ubiquitin–protein ligase gene (UBE3A) in Angelman syndrome. Nature Genet. 15, 74–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Kishino, T., Lalande, M. & Wagstaff, J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet. 15, 70–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Nakao, M. et al. Imprinting analysis of three genes in the Prader–Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3, 309–315 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Sutcliffe, J.S. et al. The E6–AP ubiquitin–protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res. 7, 368–377 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Magenis, R.E., Brown, M.G., Lacy, D.A., Budden, S. & LaFranchi, S. Is Angelman syndrome an alternate result of del(15)(q11q13)? Am. J. Med. Genet. 28, 829–838 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Zackowski, J.L. et al. Cytogenetic and molecular analysis in Angelman syndrome. Am. J. Med. Genet. 46, 7–11 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Knoll, J.H.M. et al. Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet. 32, 285–290 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, C.A. et al. Maternal origin of 15q11-13 deletions in Angelman syndrome suggests a role for genomic imprinting. Am. J. Med. Genet. 35, 350–353 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Malcolm, S. et al. Uniparental paternal disomy in Angelman's syndrome. Lancet 337, 694–697 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Reis, A. et al. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am. J. Hum. Genet. 54, 741–747 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cattanach, B. et al. A mouse model of Angelman syndrome. Mamm. Genome 8, 472–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. van Hille, B., Vanek, M., Richener, H., Green, J.R. & Bilbe, G. Cloning and tissue distribution of subunits C, D, and E of the human vacuolar H+-ATPase. Biochem. Biophys. Res. Commun. 197, 15–21 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Jay, V., Becker, I.E., Chan, F.-W. & Perry, T.L. Puppet-like syndrome of Angelman: a pathologic and neurochemical study. Neurology 41, 416–422 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Kyriakidas, T., Hallam, L.A., Hockey, A., Silberstein, P. & Kakulas, B.A. Angelman's syndrome: a neuropathological study. Acta Neuropathol. 83, 675–678 (1992).

    Article  Google Scholar 

  19. Huibregtse, J.M., Scheffner, M. & Howley, P.M. Cloning and expression of the cDNA for E6-AP, a protein that mediates the interaction of the human papillomavirus E6 oncoprotein with p53. Mol. Cell Biol. 13, 775–784 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scheffner, M., Nuber, U. & Huibregtse, J.M. Protein ubiquitinatipn involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373, 81–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Vu, T.H. & Hoffman, A.R. Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371, 714–717 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. DeChiara, T.M., Robertson, E.J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Albrecht, U., Eichele, G., Helms, J.A. & Lu, H.-C. Visualization of gene expression patterns by in situ hybridization. in Molecular and Cellular Methods in Developmental Toxicology (ed. Daston, G.P.) 23–48 (CRC Press, Boca Raton, FL 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur L. Beaudet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, U., Sutcliffe, J., Cattanach, B. et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet 17, 75–78 (1997). https://doi.org/10.1038/ng0997-75

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0997-75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing