Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A complete set of human telomeric probes and their clinical application

A Correction to this article was published on 01 December 1996

Abstract

Human chromosomes terminate with specialized telomeric structures including the simple tandem repeat (TTAGGG)n and additional complex subtelomeric repeats1–3. Unique sequence DNA for each telomere is located 100–300 kilobases (kb) from the end of most chromosomes. A high concentration of genes4 and a number of candidate genes for recognizable syndromes5–8 are known to be present in telomeric regions. The human telomeric regions represent a major diagnostic challenge in clinical cytogenetics, because most of the terminal bands are G negative, and cryptic deletions and translocations in the telomeric regions are therefore difficult to detect by conventional cytogenetic methods. In fact, several submicroscopic chromosomal abnormalities in patients with undiagnosed mental retardation or multiple congenital anomalies have been identified by other molecular methods such as DNA polymorphism analysis9,10. To improve the sensitivity for deletion detection and to determine whether such cryptic rearrangements represent a significant source of human pathology that has not been previously appreciated, it would be valuable to have specific FISH probes for all human telomeres. We report here the isolation and characterization of a complete set of specific FISH probes representing each human telomere. As most of these clones are at a known distance of within 100–300 kb from the end of the chromosome arm, this provides a 10-fold improvement in deletion detection sensitivity compared with high-resolution cytogenetics (2–3 Mb resolution). While testing these probes, we serendipitously identified a family with multiple members carrying a cryptic 1q;11p rearrangement in the balanced or unbalanced state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moyzis, R.K. et al. A highly conserved repetitive DNA sequence (TTAGGG)n present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85, 6622–6626 (1988).

    Article  CAS  Google Scholar 

  2. Brown, W.R.A. et al. Structure and polymorphism of human telomere-associated DNA. Cell 63, 119–132 (1990).

    Article  CAS  Google Scholar 

  3. Cross, S., Lindsey, J., Fantes, J., McKay, S., McGill, N. & Cooke, H. The structure of a subterminal repeated sequence present on many human chromosomes. Nucl. Acids Res. 18, 6649–6657 (1990).

    Article  CAS  Google Scholar 

  4. Saccone, S., De Sario, A., Della-Valle, G. & Bernardi, G. The highest gene concentrations in the human genome are in teiomeric bands of metaphase chromosomes. Proc. Natl. Acad. Sci. USA 89, 4913–4917 (1992).

    Article  CAS  Google Scholar 

  5. Lamb, J. et al. Detection of breakpoints in submicroscopic chromosomal translocation, illustrating an important mechanism for genetic disease. Lancet 2, 819–824 (1989).

    Article  CAS  Google Scholar 

  6. Overhauser, J. et al. Prenatal diagnosis and carrier detection of a cryptic translocation by using DNA markers from the short arm of chromosome 5. Am. J. Hum. Genet. 45, 296–303 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Altherr, M.R. et al. Molecular confirmation of Wolf-Hirschhorn syndrome with a subtle translocation of chromosome 4. Am. J. Hum. Genet. 49, 1235–1242 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuwano, A., Ledbetter, S.A., Dobyns, W.B., Emanuel, B.S. & Ledbetter, D.H. Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridization. Am. J. Hum. Genet. 49, 707–714 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Flint, J. et al. The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genet. 9, 132–140 (1995).

    Article  CAS  Google Scholar 

  10. Biesecker, L.G. et al. Detection of a subtle rearrangement of chromosome 22 using molecular techniques. Am. J. Med. Genet. 58, 389–394 (1995).

    Article  CAS  Google Scholar 

  11. Riethman, H.C., Moyzis, R.K., Meyne, J., Burke, D.T. and Olson, M.V. Cloning human telomeric DNA fragments into Saccharomyces cerevisiae using a yeast-artificial-chromosome vector. Proc. Natl. Acad. Sci. USA 86, 6240–6244 (1989).

    Article  CAS  Google Scholar 

  12. Bates, G.P. et al. A yeast artificial chromosome telomere clone spanning a possible location of the Huntington disease gene. Am. J. Hum. Genet. 46, 762–775 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin-Gailardo, A. et al. Molecular analysis of a novel subtelomeric repeat with polymorphic chromosomal distribution. Cytogenet. Cell Genet. 71, 289–295 (1995).

    Article  Google Scholar 

  14. Sternberg, N.L. Cloning high molecular weight DNA fragments by the bacteriophage P1 system. Trends Genet. 8, 11–16 (1992).

    Article  CAS  Google Scholar 

  15. loannou, P.A. et al. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nature Genet. 6, 84–89 (1994).

    Article  Google Scholar 

  16. Ning, Y., Rosenberg, M., Biesecker, L.G. & Ledbetter, D.H. Isolation of the human chromosome 22q telomere and its application to detection of cryptic chromosomal abnormalities. Hum. Genet. 97, 765–769 (1996).

    Article  CAS  Google Scholar 

  17. Ferrin, L.J. & Camerini-Otero, R.D. Selective cleavage of human DNA: RecA-assisted restriction endonuclease (RARE) cleavage. Science 254, 1494–1497 (1991).

    Article  CAS  Google Scholar 

  18. Ferrin, L.J. & Camerini-Otero, R.D. Long-range mapping of gaps and telomeres with RecA-assisted restriction endonuclease (RARE) cleavage. Nature Genet. 6, 379–383 (1994).

    Article  CAS  Google Scholar 

  19. Collins, C., Kuo, W.L., Segraves, R., Fuscoe, J., Pinkel, D. & Gray, J.W. Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics 11, 997–1006 (1991).

    Article  CAS  Google Scholar 

  20. Speicher, M.R., Ballard, S.G. & Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genet. 12, 368–375 (1996).

    Article  CAS  Google Scholar 

  21. Schrock, E. et al. Multicolor spectral karyotyping of human chromosomes. Science 273, 494–497 (1996).

    Article  CAS  Google Scholar 

  22. Riethman, H.C., Spais, C., Buckingham, J., Grady, D. & Moyzis, R.K. Physical analysis of the terminal 240 kb of DNA from human chromosome 1q. Genomics 17, 25–32 (1993).

    Article  CAS  Google Scholar 

  23. Negorev, D.G., Macina, R.A., Spais, C., Ruthig, L.A., Hu, X.-L. & Riethman, H.C. Physical analysis of the terminal 270 kb of DNA from human chromosome 1q. Genomics 22, 569–578 (1994).

    Article  CAS  Google Scholar 

  24. Macina, R.A., Negorev, D.G., Spais, C., Ruthig, L.A., Hu, X.-L. and Riethman, H.C. Sequence organization of the human chromosome 2q telomere. Hum. Mol. Genet. 3, 1847–1853 (1994).

    Article  CAS  Google Scholar 

  25. Macina, R.A. & Riethman, H.C. Mapping vector-adjacent DNA from a 7q human telomeric YAC using RARE. Mamm. Genome 5, 596 (1994).

    Article  CAS  Google Scholar 

  26. Browne, D.L., Smith, E.A., Dietz-Band, J., Riethman, H.C., Phromchotikul, T. & Litt, M. Dinucleotide repeat polymophism at the human chromosome 11p telomere (D11S2071). Genomics 25, 600–601 (1995).

    Article  CAS  Google Scholar 

  27. Macina, R.A. et al. Molecular cloning and RARE cleavage mapping of human 2p, 6q, 8q, 12q, and 18q telomeres. Genome Res. 5, 225–232 (1995).

    Article  CAS  Google Scholar 

  28. Reston, J.T., Hu, X.-L., Macina, R.A., Spais, C. & Riethman, H.C. Structure of the terminal 300 kb of DNA from human chromosome 21q. Genomics 26, 31–38 (1995).

    Article  CAS  Google Scholar 

  29. Youngman, S. et al. The telomeric 60 kb of chromosome arm 4p is homologous to telomeric regions on 13p, 15p, 21 p and 22p. Genomics 14, 350–356 (1992).

    Article  CAS  Google Scholar 

  30. Wright, T.J. et al. Fine mapping of the FSHD gene region orientates the rearranged fragment detected by the probe p13E-11. Hum. Mol. Genet. 2, 1673–1678 (1993).

    Article  CAS  Google Scholar 

  31. Cooke, H.J., Brown, W.R. & Rappold, G.A. Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317, 687–692 (1985).

    Article  CAS  Google Scholar 

  32. Kvaloy, K., Galvagni, F. & Brown, W.R. The sequence organization of the long arm pseudoautosomal region of the human sex chromosomes. Hum. Mol. Genet. 3, 771–778 (1994).

    Article  CAS  Google Scholar 

  33. Lehrach, H. et al. Hybridization fingerprinting in genome mapping and sequencing. in Genome Analysis Vol. 1: Genetic and Physical Mapping. (eds Davies, K.E. & Tilghman, S.M.) 39–81 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ning, Y., Roschke, A., Smith, A. et al. A complete set of human telomeric probes and their clinical application. Nat Genet 14, 86–89 (1996). https://doi.org/10.1038/ng0996-86

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-86

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing