Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes

Abstract

Hereditary multiple exostoses (EXT) is an autosomal dominant condition characterized by short stature and the development of bony protuberances at the ends of all the long bones. Three genetic loci have been identified by genetic linkage analysis at chromosomes 8q24.1, 11p11–13 and 19p. The EXT1 gene on chromosome 8 was recently identified and characterized. Here, we report the isolation and characterization of the EXT2 gene. This gene shows striking sequence similarity to the EXT1 gene, and we have identified a four base deletion segregating with the phenotype. Both EXT1 and EXT2 show significant homology with one additional expressed sequence tag, defining a new multigene family of proteins with potential tumour suppressor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Solomon, L. Bone growth in diaphyseal acalasis. J. Bone Joint Surg. 43, 700–716 (1961).

    Article  Google Scholar 

  2. Hennekam, R.C. Hereditary multiple exostoses. J. Med. Genet. 28, 262–266 (1991).

    Article  CAS  Google Scholar 

  3. Schmale, G.A., Conrad, E.U. & Raskind, W.H. The natural history of hereditary multiple exostoses. J. Bone Joint Surg. Am. 76, 986–992 (1994).

    Article  CAS  Google Scholar 

  4. Leone, N.C. et al. Hereditary multiple exostosis. J. of Hered. 78, 171–177 (1987).

    Article  CAS  Google Scholar 

  5. Luckert-Wicklund, C., Pauli, R., Johnston, D. & Hecht, J. Natural history of hereditary multiple exostoses. Am. J. Med. Genet. 55, 43–46 (1995).

    Article  Google Scholar 

  6. Cook, A. et al. Genetic heterogeneity in families with hereditary multiple exostoses. Am. J. Hum. Genet. 53, 71–79 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kooth, R., Macklin, M. & Hilbish, T. Diaphyseal aclasis (multiple exostoses) on Guam. Am. J. Hum. Genet. 13, 340–347 (1961).

    Google Scholar 

  8. Ludecke, H.J. et al. Molecular dissection of a contiguous gene syndrome: localization of the genes involved in the Langer-Giedion syndrome. Hum. Mol. Genet. 4, 31–36 (1995).

    Article  CAS  Google Scholar 

  9. Wu, Y.Q. et al. Assignment of a second locus for multiple exostoses to the pericentromeric region of chromosome 11. Hum. Mol. Genet. 3, 167–171 (1994).

    Article  CAS  Google Scholar 

  10. Wuyts, W. et al. Refinement of the multiple exostoses locus (EXT2) to a 3-cM interval on chromosome 11. Am. J. Hum. Genet. 57, 382–387 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Merrer, M. et al. A gene for hereditary multiple exostoses maps to chromosome 19p. Hum. Mol. Genet. 3, 717–722 (1994).

    Article  CAS  Google Scholar 

  12. Hecht, J.T. et al. Hereditary multiple exostoses and chondrosarcoma: linkage to chromosome 11 and loss of heterozygosity for EXT-linked markers on chromosomes 11 and 8. Am. J. Hum. Genet. 56, 1125–1131 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Raskind, W.H., Conrad, E.U., Chansky, H. & Matsushita, M. Loss of heterozygosity in chondrosarcomas for markers linked to hereditary multiple exostoses loci on chromosomes 8 and 11. Am. J. Hum. Genet. 56, 1132–1139 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ann, J. et al. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet. 11, 137–143 (1995).

    Article  Google Scholar 

  15. Lovett, M. Fishing for complements: finding genes by direct selection. Trends Genet. 10, 352–357 (1994).

    Article  CAS  Google Scholar 

  16. Smith, M.W. et al. A sequence-tagged site map of human chromosome 11. Genomics 17, 699–725 (1993).

    Article  CAS  Google Scholar 

  17. Quackenbush, J. et at. An STS content map of human chromosome 11: localization of 910 YAC clones and 109 islands. Genomics 29, 512–525 (1995).

    Article  CAS  Google Scholar 

  18. Cohen, D., Chumakov, I. & Weissenbach, J. A first-generation physical map of the human genome. Nature 366, 698–701 (1993).

    Article  CAS  Google Scholar 

  19. Qin, S. et al. A chromosome 11 YAC library. Genomics 16, 580–585 (1993).

    Article  CAS  Google Scholar 

  20. James, M.R. et al. A radiation hybrid map of 506 STS markers spanning human chromosome 11. Nature Genet. 8, 70–76 (1994).

    Article  CAS  Google Scholar 

  21. Longmire, J. et al. Construction and characterization of partial digest libraries made from flow-sorted human chromosome 16. Genet. Anal. Tech. Appl. 10, 49–76 (1993).

    Article  Google Scholar 

  22. Evans, G. & Lewis, K. Physical mapping of complex genomes by cosmid multiplex analysis. Proc. Natl Acad. Sci. USA 86, 5030–5034 (1989).

    Article  CAS  Google Scholar 

  23. Smith, M.W., Holmsen, A.L., Wei, Y.H., Peterson, M. & Evans, G.A. Genomic sequence sampling: a strategy for high resolution sequence-based physical mapping of complex genomes. Nature Genet. 7, 40–47 (1994).

    Article  CAS  Google Scholar 

  24. Lovett, M., Kere, J. & Hinton, L.M. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc. Natl. Acad. Sci. USA 88, 9628–9632 (1991).

    Article  CAS  Google Scholar 

  25. Atlschul, S., Gish, W., Miller, W., Meyers, E. & Lipman, D. Basic local alignment search tool. J. Mol. Bioi. 215, 403–410 (1990).

    Article  Google Scholar 

  26. Altschul, S., Boguski, M., Gish, W. & Wootton, J. Issues in searching molecular sequence databases. Nature Genef. 6, 119–129 (1994).

    Article  CAS  Google Scholar 

  27. Lennon, G., Auffray, C., Polymeropoulos, M. & Soares, M. The I.M.A.G.E. Consortium: An integrated Molecular Analysis of Genomes and their Expression. Genomics (in the press).

  28. Frohman, M. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Meth. Enzymol. 218, 340–356 (1993).

    Article  CAS  Google Scholar 

  29. Kozak, M. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15, 8125–8148 (1994).

    Article  Google Scholar 

  30. Del Mastro, R. et al. Human chromosome-specific cDNA libraries: New tools for gene identification and genome annotation. Genome Res. 5, 185–194 (1995).

    Article  CAS  Google Scholar 

  31. Levy-Lahad, E. et al. Candidate Gene for the Chromosome 1 Familial Alzheimer's Disease Locus. Science 269, 973–977 (1995).

    Article  CAS  Google Scholar 

  32. Evans, G.A. in Genome Analysis: A Laboratory Manual. (eds. Birren, B., Green, E., Heiter, P., Klapholz, S. & Myers, R.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, in the press).

  33. Orita, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen A. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stickens, D., Clines, G., Burbee, D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 14, 25–32 (1996). https://doi.org/10.1038/ng0996-25

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0996-25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing