Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polygenic control of autoimmune diabetes in nonobese diabetic mice

Abstract

Partial exclusion mapping of the nonobese (NOD) diabetic mouse genome has shown linkage of diabetes to at least five different chromosomes. We have now excluded almost all of the genome for the presence of susceptibility genes with fully recessive effects and have obtained evidence of linkage of ten distinct loci to diabetes or the pre–diabetic lesion, insulitis, indicative of a polygenic mode of inheritance. The relative importance of these loci and their interactions have been assessed using a new application of multiple polychotomous regression methods. A candidate disease gene, interleukin–2 (Il–2), which is closely linked to insulitis and diabetes, is shown to have a different sequence in NOD, including an insertion and a deletion of tandem repeat sequences which encode amino acid repeats in the mature protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Todd, J.A. et al. Genetic analysis of autoimmune type 1 diabetes mellitus in mice. Nature 351, 542–5470542-547 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Jacob, H. et al. Genetic dissection of autoimmune type 1 diabetes in the BB rat. Nature Genet. 2, 56–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Hilbert, P. et al. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353, 521–529 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Jacob, H.J. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Rise, M.L., Frankel, W.N., Coffin, J.M. & Seyfried, T.N. Genes for epilepsy mapped in the mouse. Science 253, 669–673 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Hearne, C.M., Ghosh, S & Todd, J.A Microsatellites for linkage analysis of genetic traits. Trends Genet. 8, 288–294 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Castano, L. – Eisenbarth, G.S. Type-I diabetes: A chronic autoimmune disease of human, mouse, and rat. A. Rev. Immunol. 8, 647–79 (1990).

    Article  CAS  Google Scholar 

  8. Todd, J.A., Bell, J.I. & McDevitt, H.O. HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329, 599–604 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Julier, C. et al. Insulin-IGF2 region on chromosome 11 p encodes a gene implicated in HLA-DR4-dependent diabetes susceptibility. Nature 354, 155–159 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Bain, S.C. et al. Insulin gene region-encoded susceptibility to type 1 diabetes is not restricted to HLA-DR4-positive individuals. Nature Genet. 2, 212–215 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Cornall, R.J. et al. Type 1 diabetes in mice is linked to the interleukin-1 receptor and Lsh/lty/Bcg genes on chromosome 1. Nature 353, 262–265 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. Wicker, L.S. et al. Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes. J. exp. Med. 176, 67–77 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Kroemer, G., Andreu, J., Gonzalo, J., Guitierrez-Ramos, J. & Martinez-A, C. Interleukin-2, autotolerance, and autoimmunity. Adv. Immunol. 50, 147–235 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Kashima, N. et al. Unique structure of murine interleukin-2 as deduced from cloned cDNAs. Nature 313, 402–404 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Degrave, W. et al. Cloning and structure of a mouse interleukin-2 chromosomal gene. Molec. Biol. Rep. 11, 57–61 (1986).

    Article  CAS  Google Scholar 

  16. Crow, J. Basic concepts in population, quantitative, and evolutionary genetics (W. H. Freeman, New York, 1986).

    Google Scholar 

  17. Paterson, A.H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Risch, N., Ghosh, S. & Todd, J.A. Statistical evaluation of multiple locus linkage data in experimental species and relevance to human studies: application to murine and human IDDM. Am. J. hum. Genet. (in the press).

  19. Prins, J.-B. et al. Linkage on chromosome 3 of autoimmune diabetes and defective Fc receptor for IgG in NOD mice. Scienc 260, 659–698 (1993).

    Article  Google Scholar 

  20. Garchon, H., Bedosa, P., Eloy, L. & Bach, J.-F. Identification and mapping to chromosome 1 of a susceptibility locus for periinsulitis in non-obese diabetic mice. Nature 353, 260–262 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Matesanz, F., Alcina, A. & Pellicer, A. A new cDNA sequence for the murine interleukin-2 gene. Biochim. Biophys. Acta 1132, 335–336 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Matesanz, F., Alcina, A. & Pellicer, A. Existence of at least five interleukin-2 molecules in different mouse strains. Immunogenetics (in the press).

  23. Riggins, G. et al. Human genes containing polymorphic trinucleotide repeats. Nature Genet. 2, 186–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Hunting-ton's disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  25. Flemming, C.L., Russell, S.J. & Collins, M.K.L. Mutation of Asp20 of human interleukin-2 reveals a dual role of the p55 a chain of the interleukin-2 receptor. Eur. J. Immunol. 23, 917–921 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Zurawski, S.M., Mosmann, T.R., Benedik, M. & Zurawski, G. Alterations in the amino-terminal third of mouse interleukin 2: effects on biological activity and immunoreactivity. J. Immunol. 137, 3354–3360 (1986).

    CAS  PubMed  Google Scholar 

  27. De Gouyon, B. et al. Genetic analysis of diabetes and insulitis in an interspecific cross of the nonobese diabetic mouse with Mus spretus. Proc. natn. Acad. Sci. U.S.A. 90, 1877–1881 (1993).

    Article  CAS  Google Scholar 

  28. Morton, N.E., Shields, D.C. & Collins, A. Ann. hum. Genet. 55, 301–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Dietrich, W. et al. SSLP Genetic map of the mouse (Mus musculus) 2N=40. in Genetic Maps-Locus Maps of Complex Organisms 6th edn (ed. O'Brien, S.J.) (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  30. Dietrich, W. et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 131, 423–447 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Love, J.M., Knight, A.M., McAleer, A.M. & Todd, J.A. Towards construction of a high resolution map of the mouse genome using PCR-analysed microsatellites. Nucl. Acids Res. 18, 4123–4130 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hearne, C.M. et al. Additional microsatellite markers for mouse genome mapping. Mamm. Genome. 1, 273–282 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Cornall, R.J., Aitman, T.J., Hearne, C.M. & Todd, J.A. The generation of a library of PCR-analyzed microsatellite variants for genetic mapping of the mouse genome. Genomics 10, 874–881 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Cornall, R.J., Friedman, J.M. & Todd, J.A. Mouse microsatellites from a flow-sorted 4:6 Robertsonian chromosome. Mamm. Genome 3, 620–624 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Aitman, T.J., Hearne, C.M., McAleer, M.A. & Todd, J.A. Mononucleotide repeats are an abundant source of length variants in mouse genomic DNA. Mamm. Genome 1, 206–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. McAleer, M.A. et al. Linkage analysis of 84 microsatellite markers in intra- and interspecific backcrosses. Mamm. Genome 3, 457–460 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Poustka, A., Rackwitz, H.-R., Frischauf, A.-M., Hohn, B. & Lehrach, H. Selective isolation of cosmid clones by homologous recombination in Escherichia coli. Proc. natn. Acad. Sci.U.S.A. 81, 4129–4133 (1984).

    Article  CAS  Google Scholar 

  38. Dixon, W. BMPD Statistical Software (University of California Press, Berkeley, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, S., Palmer, S., Rodrigues, N. et al. Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 4, 404–409 (1993). https://doi.org/10.1038/ng0893-404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0893-404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing