Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development

Abstract

The Msx1 homeobox gene is expressed at diverse sites of epithelial–mesenchymal interaction during vertebrate embryogenesis, and has been implicated in signalling processes between tissue layers. To determine the phenotypic consequences of its deficiency, we prepared mice lacking Msx1 function. All Msx1 homozygotes manifest a cleft secondary palate, a deficiency of alveolar mandible and maxilla and a failure of tooth development. These mice also exhibit abnormalities of the nasal, frontal and parietal bones, and of the malleus in the middle ear. Msx1 thus has a critical role in mediating epithelial–mesenchymal interactions during craniofacial bone and tooth development. The Msx1/Msx1 phenotype is similar to human cleft palate, and provides a genetic model for cleft palate and oligodontia in which the defective gene is known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hill, R.E. et al. A new family of mouse homeo box-containing genes: molecular structure chromosomal location & developmental expression of Hox-7.1. Genes Dev. 3, 26–37 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Robert, B., Sassoon, D., Jacq, B., Gehring, W. & Buckingham, M. >Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J. 8, 91–100 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gehring, W.J. The homeobox: Structural and evolutionary aspects, in Molecular Approaches toDevelopmental Biology (eds Firtel, R.A. & Davidson, E.H.) 115–129 (Liss, New York, 1987).

    Google Scholar 

  4. Holland, P.W.H. Cloning and evolutionary analysis of msh like homeobox genes from mouse, zebrafish and ascidian. Gene 98, 253–257 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Monaghan, A.P. et al. The Msh-like homeobox genes define domains in the developing vertebrate eye. Development 112,1053–1061 (1991).

    CAS  PubMed  Google Scholar 

  6. Bell, J.R. et al. Genomic structure, chromosomal location, and evolution of the mouse Hox-8 gene. Genomics 16, 123–131 and 17, 800 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Ivens, A. et al. The human homeobox gene Hox7 maps chromosome 4p16.1 and may be implicated in Wolf-Hirschhorn syndrome. Human Genet. 84, 473–476 (1990).

    Article  CAS  Google Scholar 

  8. Hewitt, J.E., Clark, L.N., Ivens, A. & Williamson, R. Structure and sequence of the human homeobox gene Hox7. Genomics 11, 670–678 (1991).

    Article  CAS  PubMed  Google Scholar 

  9. Jabs, E.W. et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. MacKenzie, A., Leeming, G.L., Jowett, A.K., Ferguson, M.W.J. & Sharpe, P.T. The homeobox gene Hox7.1 has specific regional and temporal expression patterns during early murine craniofacial embryogenesis, especially tooth development in vivo and in vitro. Development 111, 269–285 (1991).

    CAS  PubMed  Google Scholar 

  11. MacKenzie, A., Ferguson, M.W.J. & Sharpe, P.T. Hox-7 expression during murine craniofacial development. Development 113, 601–611 (1991).

    CAS  PubMed  Google Scholar 

  12. MacKenzie, A., Ferguson, M.W.J. & Sharpe, P.T. Expression patterns of the homeobox gene Hox 8 in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 115, 403–420 (1992).

    CAS  PubMed  Google Scholar 

  13. Suzuki, H.R., Padanilam, B.J., Vitale, E., Ramirez, F. & Solursh, M. Repeating developmental expression of G-Hox7, a novel homeobox-containing gene in the chicken. Dev. Biol. 148, 375–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Lyons, G.E., Houzelstein, D., Sassoon, D., Robert, B. & Buckingham, M. Multiple sites of Hox-7 expression during mouse embryogenesis: comparison with retinoic acid receptor mRNA localization. Molec. repro. Dev. 32, 303–314(1992).

    Article  CAS  Google Scholar 

  15. Chan-Thomas, P.S., Thompson, R.P., Robert, B., Yacoub, M.H. & Barton, P.J.R. Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in chick. Develop. Dyn. 197, 203–216 (1993).

    Article  CAS  Google Scholar 

  16. Robert, B., Lyons, G., Simandl, B.K., Kuroiwa, A. & Buckingham, M. The apical ectodermal ridge regulates Hox-7 and Hox-8 gene expression in developing chick limb buds. Genes Dev. 5, 2363–2374 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Davidson, D.R., Crawley, A., Hill, R.E. & Tickle, C. Position dependent expression of two related homeobox genes in developing vertebrate limbs. Nature 352, 429–431 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Coelho, C.N.D., Krabbenhoft, K.M., Upholt, W.B., Fallon, J.F. & Kosher, R.A. Altered expression of the chicken homeobox-containing gene GHox-7 and GHox-8 in the limb buds of limbless mutant chick embryos. Development 113, 1487–1493 (1991).

    CAS  PubMed  Google Scholar 

  19. Coelho, C.N.D., Upholt, W.B. & Kosher, R.A. Role of the chicken homeobox-containing genes GHox-4.6 and GHox-8 in the specification of positional identities during the development of normal and polydactylous chick limb buds. Development 115, 629–637 (1992).

    CAS  PubMed  Google Scholar 

  20. Ros, M.A. et al. Apical ridge dependent and independent mesodermal domains of GHox-7 and GHox-8 expression in chick limb buds. Development 116, 811–818 (1992).

    CAS  PubMed  Google Scholar 

  21. Brown, J.M. et al. Experimental analysis of the control of expression of the homeobox-gene Msx-1 in the developing limb and face. Development 119, 41–48 (1993).

    CAS  PubMed  Google Scholar 

  22. Takahashi, Y., Bontoux, M. & Le Douarin, N.M. Epithelio-mesenchymal interactions are critical for Quox 7 expression and membrane bone differentiation in the neural crest derived mandibular mesenchyme. EMBOJ. 10, 2387–2393(1991).

    Article  CAS  Google Scholar 

  23. Jowett, A.K., Vainio, S., Ferguson, M.W.J., Sharpe, P.T. & Thesleff, I. Epithelial-mesenchymal interactions are required for msx1 and msx2 gene expression in the developing murine molar tooth. Development 117, 461–470(1993).

    CAS  PubMed  Google Scholar 

  24. Takahashi, Y., Monsoro-Burg, A.-H., Bontoux, M. & Le Douarin, N.M. A role for Quox-8 in the establishment of the dorsoventral pattern during vertebrate development. Proc. natn. Acad. Sci. U.S.A. 89, 10237–10241 (1992).

    Article  CAS  Google Scholar 

  25. Davidson, D.R. & Hill, R.E. Msh-like genes: a family of homeobox genes with wide ranging expression during vertebrate development. Sem. Dev. Biol. 2, 405–412 (1991).

    Google Scholar 

  26. Muneoka, K. & Sasoon, D. Molecular aspects of regeneration in developing vertebrate limbs. Dev. Biol. 152, 37–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Izpisúa-Belmonte, J.-C. & Duboule, D. Homeobox genes and pattern formation in the vertebrate limb. Dev. Biol. 152, 26–36 (1992).

    Article  PubMed  Google Scholar 

  28. Davidson, E.H. Later embryogenesis: regulatory circuitry in morphogenetic fields. Development 118, 665–690 (1993).

    CAS  PubMed  Google Scholar 

  29. Robert, B. et al. Induction phenomena in vertebrate limb formation and expression of homeobox genes. Ann. Génétique 36, 39–45 (1993).

    CAS  Google Scholar 

  30. Gorlin, R.J., Cohen, M.M.Jr., & Levin, L.S. Syndromes of the Head and Neck. Oxford Monograph on Medical genetics No. 19, Third edition. 693–714 (Oxford University Press, Oxford, England, 1990).

    Google Scholar 

  31. Ranta, R. A review of tooth formation in children with cleft lip/palate. A. J. Orthod. Dentofac. Orthop. 90, 11–18 (1986).

    Article  CAS  Google Scholar 

  32. Randall, P., Krogman, W.M. & Jahina, S., Robin and the syndrome that bears his name. Cleft Palate J. 2, 237–246 (1965).

    Google Scholar 

  33. McKusick, V.A. Mendelian Inheritance in Man. 8th edn 1138–1139 (Johns Hopkins University Press, Baltimore 1988).

    Google Scholar 

  34. Couly, G. and Le Douarin, N.M. The fate map of the cephalic neural primordium at the presomitic to the 3-somite stage in the avian embryo. Development Supp. 103, 101–113 (1988).

    Google Scholar 

  35. Couly, G.F., Coltey, P.M. & Le Douarin, N.M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429 (1993).

    CAS  PubMed  Google Scholar 

  36. Noden, D.M. Interactions and fates of avian craniofacial mesenchyme. Development Supp. 103, 121–140 (1988).

    Google Scholar 

  37. Lumsden, A.G.S. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development Supp. 103, 155–169 (1988).

    Google Scholar 

  38. Johnston, M.C. The neural crest in abnormalities of the face and brain. Birth Defects: Original Article Series, Vol. Xl(7), 1 18 (The National March of Dimes Foundation, 1975).

    Google Scholar 

  39. Sulik, K.K., Cook, C.S. & Webster, W.S. Teratogenesis and craniofacial malformations: relationships to cell death. Development Supp. 103, 213–232 (1988).

    CAS  Google Scholar 

  40. Palmer, R.M. & Lumsden, A.G.S. Development of periodontal ligament and alveolar bone in homografted recombinations of enamel organs and papillary, pulpal and follicular mesenchyme in the mouse. Arch. Oral Biol. 32, 281–289 (1987).

    Article  CAS  PubMed  Google Scholar 

  41. Vainio, S., Karavanova, I., Jowett, A. & Thesleff, I. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 75, 45–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Coelho, C.N.D. et al. Expression of the chicken homeobox-containing gene GHox-8 during embryonic chick limb development. Mech. Dev. 34, 143–154 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Coelho, C.N.D., Sumoy, L., Kosher, R.A. & Upholt, W.B., GHox-7: A chicken homeobox-containing gene expressed in a fashion consistent with a role in patterning events during embryonic chick limb development. Differentiation 49, 85–92 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Ferguson, M. Palate development. Development Supp. 103, 41–60 (1988).

    Google Scholar 

  45. Fitch, N. Development of cleft palate in mice homozygous for the shorthead mutation. J. Morphot. 109, 151–157 (1961).

    Article  CAS  Google Scholar 

  46. Seegmiller, R.E. & Fraser, F.C. Mandibular growth retardation as a cause of cleft palate in mice homozygous for the chondrodysplasia gene. J. Embryol. exp. Morph. 38, 227–238 (1977).

    CAS  PubMed  Google Scholar 

  47. Juriloff, D.M. & Harris, M.J. Abnormal facial development in the mouse mutant first arch. J. Cranio. Gen. devl. Biol. 3, 317–337 (1983).

    CAS  Google Scholar 

  48. Culiat, C.T. et al. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the β3 subunit of the type Aγ-aminobutyric acid receptor. Proc. natn. Acad. Sci. U.S.A. 90, 5105–5109(1993).

  49. Nakatsu, Y. et al. A cluster of three GABA receptor subunit genes is deleted in a neurological mutant of the mouse p locus. Nature 364, 448–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Gendron-Maguire, M. et al. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Rijli, F.M. et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a homeotic selector gene. Cell 75, 1333–1349 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Farrall, M. & Holder, S. Familal recurrence-pattern analysis of cleft lip with or without cleft palate. Am. J. hum. Gen. 50, 270–277 (1992).

    CAS  Google Scholar 

  53. Marazita, M.L., Hu, D-N, Spence, M.A., Liu, Y-E., Melnick, M. Cleft lip with or without cleft palate in Shanghai, China: evidence for an autosomal major locus. Am. J. hum. Gen. 51, 648–653 (1992).

    CAS  Google Scholar 

  54. Kurnit, D.M., Layton, W.M. & Matthysse, S., Genetics, chance, and morphogenesis. Am. J. hum. Gen. 41, 979–995 (1987).

    CAS  Google Scholar 

  55. Li, E., Bestor, T. & Jaenisch, R. argeted mutation of the DNA methyl transferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaensich, R. Germ line transmission of adisrupted β2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature 342, 435–438 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Robertson, E.J. Embryo-derived stem cell lines in Teratocarcinomas and embryonic stem cells a practical approach (ed. Roberston. E.J.)71–112(IRL press, Oxford, 1987).

    Google Scholar 

  58. Thomas, K. & Capecchi, M. Site directed mutagenesis by gene targeting in mouse embryo derived stem cells. Cell 51, 503–512 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Bradley, A. Production and analysis of chimaeric mice. in Teratocarcinomas and embryonic stem cells, a practical approach (ed. Robertson, E.J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  60. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nuc. Acid Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

  61. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22, 299–301 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satokata, I., Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6, 348–356 (1994). https://doi.org/10.1038/ng0494-348

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0494-348

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing