Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons

Abstract

Cilia have diverse roles in motility and sensory reception and their dysfunction contributes to cilia-related diseases. Assembly and maintenance of cilia depends on the intraflagellar transport (IFT) of axoneme, membrane, matrix and signalling proteins to appropriate destinations within the organelle1,2,3,4. In the current model, these diverse cargo proteins bind to multiple sites on macromolecular IFT particles, which are moved by a single anterograde IFT motor, kinesin-II, from the ciliary base to its distal tip5,6, where cargo-unloading occurs1,2,3,4,7. Here, we describe the observation of fluorescent IFT motors and IFT particles moving along distinct domains within sensory cilia of wild-type and IFT-motor-mutant Caenorhabditis elegans. We show that two anterograde IFT motor holoenzymes, kinesin-II and Osm-3–kinesin8, cooperate in a surprising way to control two pathways of IFT that build distinct parts of cilia. Instead of each motor independently moving its own specific cargo to a distinct destination, the two motors function redundantly to transport IFT particles along doublet microtubules adjacent to the transition zone to form the axoneme middle segment9. Next, Osm-3–kinesin alone transports IFT particles along the distal singlet microtubules to stabilize the distal segment. Thus, the subtle coordinate activity of these IFT motors creates two sequential transport pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensory cilia on neurons of wild-type and mutant C. elegans.
Figure 2: Anterograde IFT along middle and distal segments of sensory cilia.

Similar content being viewed by others

References

  1. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  2. Scholey, J. M. Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423–443 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Snell, W. J., Pan, J. & Wang, Q. Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117, 693–697 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Pazour, G. J. & Witman, G. B. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. 15, 105–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cole, D. G. et al. Novel heterotrimeric kinesin-related protein purified from sea urchin eggs. Nature 366, 268–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Cole, D. G. et al. Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993–1008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vale, R. D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Signor, D., Wedaman, K. P., Rose, L. S. & Scholey, J. M. Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol. Biol. Cell 10, 345–360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perkins, L. A., Hedgecock, E. M., Thomson, J. N. & Culotti, J. G. Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev. Biol. 117, 456–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Pan, J. & Snell, W. J. Kinesin-II is required for flagellar sensory transduction during fertilization in Chlamydomonas. Mol. Biol. Cell 13, 1417–1426 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morris, R. L. & Scholey, J. M. Heterotrimeric kinesin-II is required for the assembly of Motile “9+2” ciliary axonemes on sea urchin embryos. J. Cell Biol. 138, 1009–1022 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl Acad. Sci. USA 98, 7004–7011 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein, L. S. B. & Yang, Z. Microtubule-based transport systems in neurons. The roles of kinesins and dyneins. Annu. Rev. Cell. Dev. Biol. 23, 39–71 (2000).

    CAS  Google Scholar 

  14. Mesland, D. A. M., Hoffman, J. L., Caligor, E. & Goodenough, U. W. Flagellar tip activation stimulated by membrane adhesions in Chlamydomonas gametes. J. Cell Biol. 84, 599–617 (1980).

    Article  CAS  PubMed  Google Scholar 

  15. Orozco, J. T. et al. Movement of motor and cargo along cilia. Nature 398, 674 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Signor, D. et al. Role of a Class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J. Cell Biol. 147, 519–530 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, H. M., Brust-Mascher, I. & Scholey, J. M. Direct visualization of the movement of the monomeric axonal transport motor, UNC-104 along neuronal processes in living C. elegans. J. Neurosci. 21, 3749–3755 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yandell, M. D., Edgar, L. G. & Wood, W. B. Trimethylpsoralen induces small deletion mutations in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 91, 1381–1385 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Starich, T. A. et al. Mutations affecting chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sarpal, R. et al. Drosophila KAP interacts with the kinesin II motor subunit KLP64D to assemble chordotonal sensory cilia but not sperm tails. Curr. Biol. 13, 1687–1696 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Fan, J. & Beck, K. A. A role for the spectrin superfamily member Syne-1 and kinesin II in cytokinesis. J. Cell Sci. 117, 619–629 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Bentley, J. N. et al. Kinesin II mediates Vg1 mRNA transport in Xenopus oocytes. Curr. Biol. 14, 219–224 (2004).

    Article  Google Scholar 

  23. Kawasaki, Y. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002).

    Article  PubMed  Google Scholar 

  24. Yang, Z., Roberts, E. A. & Goldstein L. S. B. Functional analysis of mouse kinesin motor Kif3C. Mol. Cell Biol. 21, 5306–5311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown, J. M., Marsala, C., Kosoy, R. & Gaertig, J. Kinesin II is preferentially targeted to assembling cilia and is required for ciliogenesis and normal cytokinesis in Tetrahymena. Mol. Biol. Cell. 10, 3081–3091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berman, S. A., Wilson, N. F., Haas, N. A. & Lefebvre, P. A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr. Biol. 13, 1145–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Pan, J., Wang, Q. & Snell, W. J. An aurora kinase is essential for flagellar disassembly in Chlamydomonas. Dev. Cell 6, 445–451 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Awan, A., Bernstein, M., Hamasaki, T. & Satir, P. Cloning and characterization of Kin5, a novel Tetrahymena ciliary kinesin II. Cell Motil. Cytoskeleton 58, 1–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bargmann, C. & Mori, I. Chemotaxis and thermotaxis in C. elegans II (eds, Riddle, D., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 717–737 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1997).

    Google Scholar 

  30. Pierce-Shimomura, J. T., Morse, T. M. & Lockery, S. R. The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19, 9557–9569 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Civelekoglu-Scholey for drawing Fig. 2b, and L. Rose, F. McNally, K. B. Kaplan, D. Starr, W. Snell, J. Pan and many members of the IFT and C. elegans communities for encouragement and discussion. We thank T. Stiernagle, R. Herman and the C. elegans gene-knockout consortium for providing kinesin-II mutants. This work was supported by a grant from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Scholey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snow, J., Ou, G., Gunnarson, A. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6, 1109–1113 (2004). https://doi.org/10.1038/ncb1186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing