Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency

Abstract

Apoptosis is a form of programmed cell death that is controlled by aspartate-specific cysteine proteases called caspases. In the immune system, apoptosis counters the proliferation of lymphocytes to achieve a homeostatic balance, which allows potent responses to pathogens but avoids autoimmunity1,2. The CD95 (Fas, Apo-1) receptor triggers lymphocyte apoptosis by recruiting Fas-associated death domain (FADD), caspase-8 and caspase-10 proteins into a death-inducing signalling complex3,4. Heterozygous mutations in CD95, CD95 ligand or caspase-10 underlie most cases of autoimmune lymphoproliferative syndrome (ALPS), a human disorder that is characterized by defective lymphocyte apoptosis, lymphadenopathy, splenomegaly and autoimmunity5,6,7,8,9,10,11,12,13,14. Mutations in caspase-8 have not been described in ALPS, and homozygous caspase-8 deficiency causes embryonic lethality in mice. Here we describe a human kindred with an inherited genetic deficiency of caspase-8. Homozygous individuals manifest defective lymphocyte apoptosis and homeostasis but, unlike individuals affected with ALPS, also have defects in their activation of T lymphocytes, B lymphocytes and natural killer cells, which leads to immunodeficiency. Thus, caspase-8 deficiency in humans is compatible with normal development and shows that caspase-8 has a postnatal role in immune activation of naive lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective apoptosis and DISC analysis in family 66.
Figure 2: Characterization of an inherited caspase-8 mutation.
Figure 3: Defective immune cell responses in homozygous caspase-8 mutants.
Figure 4: Caspase-8 is required for lymphocyte activation.

Similar content being viewed by others

References

  1. Abbas, A. K. Die and let live: eliminating dangerous lymphocytes. Cell 84, 655–657 (1996)

    Article  CAS  Google Scholar 

  2. Lenardo, M. et al. Mature T lymphocyte apoptosis—immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253 (1999)

    Article  CAS  Google Scholar 

  3. Wang, J., Chun, H. J., Wong, W., Spencer, D. M. & Lenardo, M. J. Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl Acad. Sci. USA 98, 13884–13888 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Kischkel, F. C. et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276, 46639–46646 (2001)

    Article  CAS  Google Scholar 

  5. Fisher, G. H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995)

    Article  CAS  Google Scholar 

  6. Rieux-Laucat, F. et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Drappa, J., Vaishnaw, A. K., Sullivan, K. E., Chu, J. L. & Elkon, K. B. Fas gene mutations in the Canale–Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N. Engl. J. Med. 335, 1643–1649 (1996)

    Article  CAS  Google Scholar 

  8. Bettinardi, A. et al. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 89, 902–909 (1997)

    CAS  PubMed  Google Scholar 

  9. Kasahara, Y. et al. Novel Fas (CD95/APO-1) mutations in infants with a lymphoproliferative disorder. Int. Immunol. 10, 195–202 (1998)

    Article  CAS  Google Scholar 

  10. Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996)

    Article  CAS  Google Scholar 

  11. Wang, J. et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 98, 47–58 (1999)

    Article  CAS  Google Scholar 

  12. Alam, A., Cohen, L. Y., Aouad, S. & Sekaly, R. P. Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med. 190, 1879–1890 (1999)

    Article  CAS  Google Scholar 

  13. Kennedy, N. J., Kataoka, T., Tschopp, J. & Budd, R. C. Caspase activation is required for T cell proliferation. J. Exp. Med. 190, 1891–1896 (1999)

    Article  CAS  Google Scholar 

  14. Posmantur, R., Wang, K. K. & Gilbertsen, R. B. Caspase-3-like activity is necessary for IL-2 release in activated Jurkat T-cells. Exp. Cell Res. 244, 302–309 (1998)

    Article  CAS  Google Scholar 

  15. Chun, H. J. & Lenardo, M. J. Autoimmune lymphoproliferative syndrome: types I, II and beyond. Adv. Exp. Med. Biol. 490, 49–57 (2001)

    Article  CAS  Google Scholar 

  16. Juo, P., Kuo, C. J., Yuan, J. & Blenis, J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8, 1001–1008 (1998)

    Article  CAS  Google Scholar 

  17. Martin, D. A., Siegel, R. M., Zheng, L. & Lenardo, M. J. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol. Chem. 273, 4345–4349 (1998)

    Article  CAS  Google Scholar 

  18. Rager-Zisman, B., Quan, P. C., Rosner, M., Moller, J. R. & Bloom, B. R. Role of NK cells in protection of mice against herpes simplex virus-1 infection. J. Immunol. 138, 884–888 (1987)

    CAS  PubMed  Google Scholar 

  19. Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151, 60–70 (1993)

    CAS  PubMed  Google Scholar 

  20. Stahls, A., Liwszyc, G. E., Couture, C., Mustelin, T. & Andersson, L. C. Triggering of human natural killer cells through CD16 induces tyrosine phosphorylation of the p72syk kinase. Eur. J. Immunol. 24, 2491–2496 (1994)

    Article  CAS  Google Scholar 

  21. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K. & Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Chinnasamy, D. et al. Lentiviral-mediated gene transfer into human lymphocytes: role of HIV-1 accessory proteins. Blood 96, 1309–1316 (2000)

    CAS  PubMed  Google Scholar 

  23. Sneller, M. C. et al. Clincial, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 89, 1341–1348 (1997)

    CAS  PubMed  Google Scholar 

  24. Martin, D. A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl Acad. Sci. USA 96, 4552–4557 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Petrak, D., Memon, S. A., Birrer, M. J., Ashwell, J. D. & Zacharchuk, C. M. Dominant negative mutant of c-Jun inhibits NF-AT transcriptional activity and prevents IL-2 gene transcription. J. Immunol. 153, 2046–2051 (1994)

    CAS  PubMed  Google Scholar 

  26. Finer, M. H., Dull, T. J., Qin, L., Farson, D. & Roberts, M. R. kat: a high-of efficiency retroviral transduction system for primary human T lymphocytes. Blood 83, 43–50 (1994)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Germain, L. Staudt and P. Schwartzberg for critically reading the manuscript; J. Blenis, M. Peter, M. Finer, M. Roberts, D. Chinnasamy and F. Candotti for materials and reagents; D. Stephany, K. Holmes, R. Swofford and S. Tartt for flow cytometry assistance; T. Fleisher for immunophenotyping; R. Fischer for EBV cell lines; W. Strober, F. Dugan and D. Smith for clinical assistance; S. Rajagopalan and E. Long for advice and antibodies; M. Tibbetts and C. Trageser for technical assistance; J. Sung and B. Bierer for assistance with luciferase assays; N. Thekdi for discussions; Amaxa Biosystems for materials and assistance; and Pharmingen-BD Biosciences for donating antibodies for lymphocyte surface markers. H.J.C. is a Howard Hughes Medical Institute-National Institutes of Health Research Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lenardo.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, H., Zheng, L., Ahmad, M. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 419, 395–399 (2002). https://doi.org/10.1038/nature01063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01063

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing