Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia

Abstract

X-linked hypohidrotic ectodermal dysplasia results in abnormal morphogenesis of teeth, hair and eccrine sweat glands1. The gene (ED1) responsible for the disorder has been identified2,3,4, as well as the analogous X-linked gene (Ta) in the mouse5,6. Autosomal recessive disorders, phenotypically indistinguishable from the X-linked forms, exist in humans7 and at two separate loci (crinkled, cr, and downless, dl) in mice8. Dominant disorders, possibly allelic to the recessive loci, are seen in both species9,10 (ED3, Dlslk). A candidate gene has recently been identified at the dl locus11 that is mutated in both dl and Dlslk mutant alleles. We isolated and characterized its human DL homologue, and identified mutations in three families displaying recessive inheritance and two with dominant inheritance. The disorder does not map to the candidate gene locus in all autosomal recessive families, implying the existence of at least one additional human locus. The putative protein is predicted to have a single transmembrane domain, and shows similarity to two separate domains of the tumour necrosis factor receptor (TNFR) family12,13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DL transcript, physical map, genomic organization and putative protein product.
Figure 2: Expression analyses.
Figure 3: Family ED1237.
Figure 4: Sequence comparison of the proposed central β sheet of the ED1 protein (aa 293-309) and five members of the human TNF ligand superfamily.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Clarke, A. Hypohidrotic ectodermal dysplasia. J. Med. Genet. 24 , 659–663 (1987).

    Article  CAS  Google Scholar 

  2. Kere, J. et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nature Genet. 13, 409–416 (1996).

    Article  CAS  Google Scholar 

  3. Monreal, A.W., Zonana, J. & Ferguson, B. Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. Am. J. Hum. Genet. 63, 380– 389 (1998).

    Article  CAS  Google Scholar 

  4. Bayes, M. et al. The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin-A with deletion mutations in collagenous repeats. Hum. Mol. Genet. 7, 1661–1669 (1998).

    Article  CAS  Google Scholar 

  5. Ferguson, B.M. et al. Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum. Mol. Genet. 6, 1589– 1594 (1997).

    Article  CAS  Google Scholar 

  6. Srivastava, A.K. et al. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc. Natl Acad. Sci. USA 94, 13069–13074 (1997).

    Article  CAS  Google Scholar 

  7. Munoz, F. et al. Definitive evidence for an autosomal recessive form of hypohidrotic ectodermal dysplasia clinically indistinguishable from the more common X-linked disorder. Am. J. Hum. Genet. 61, 94– 100 (1997).

    Article  CAS  Google Scholar 

  8. Sundberg, J.P. Handbook of Mouse Mutations with Skin and Hair Abnormalities (CRC Press, Boca Raton, 1994).

    Google Scholar 

  9. Majumder, K. et al. YAC rescue of downless locus mutations in mice. Mamm. Genome 9, 863–868 (1998).

    Article  CAS  Google Scholar 

  10. Ho, L., Williams, M.S. & Spritz, R.A. A gene for autosomal dominant hypohidrotic ectodermal dysplasia (EDA3) maps to chromosome 2q11-q13. Am. J. Hum. Genet. 62, 1102–1106 (1998).

    Article  CAS  Google Scholar 

  11. Headon, D.J. & Overbeek, P.A. Involvement of a novel TNF receptor homologue in hair follicle induction. Nature Genet. 22, 370–374 (1999).

    Article  CAS  Google Scholar 

  12. Malek, N.P., Pluempe, J., Kubicka, S., Manns, M.P. & Trautwein, C. Molecular mechanisms of TNF receptor-mediated signaling. Recent Results Cancer Res. 147, 97– 106 (1998).

    Article  CAS  Google Scholar 

  13. Naismith, J.H. & Sprang, S.R. Modularity in the TNF-receptor family. Trends Biochem. Sci. 23, 74–79 (1998).

    Article  CAS  Google Scholar 

  14. Padanilam, B.J. et al. Characterization of the human HOX7 cDNA and identification of polymorphic markers. Hum. Mol. Genet. 1, 407–410 (1992).

    Article  CAS  Google Scholar 

  15. Deloukas, P. et al. A physical map of 30,000 human genes. Science 282, 744–746 (1998).

    Article  CAS  Google Scholar 

  16. Baala, L. et al. Both recessive and dominant forms of anhidrotic/hypohidrotic ectodermal dysplasia map to chromosome 2q11-q13. Am. J. Hum. Genet. 64, 651–653 (1999).

    Article  CAS  Google Scholar 

  17. Konrad, M. et al. A 11 Mb YAC-based contig spanning the familial juvenile nephronophthisis region (NPH1) located on chromosome 2q. Genomics 30 , 514–520 (1995).

    Article  CAS  Google Scholar 

  18. Jorgenson, R.J., Dowben, J.S. & Dowben, S.L. Autosomal dominant ectodermal dysplasia. J. Craniofac. Genet. Dev. Biol. 7, 403– 412 (1987).

    CAS  PubMed  Google Scholar 

  19. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    Article  CAS  Google Scholar 

  20. Tartaglia, L.A. & Goeddel, D.V. Tumor necrosis factor receptor signaling. A dominant negative mutation suppresses the activation of the 55-kDa tumor necrosis factor receptor. J. Biol. Chem. 267, 4304–4307 (1992).

    CAS  PubMed  Google Scholar 

  21. Bettinardi, A. et al. Missense mutations in the Fas gene resulting in autoimmune lymphoproliferative syndrome: a molecular and immunological analysis. Blood 89, 902–909 (1997).

    CAS  PubMed  Google Scholar 

  22. Infante, A.J. et al. The clinical spectrum in a large kindred with autoimmune lymphoproliferative syndrome caused by a Fas mutation that impairs lymphocyte apoptosis. J. Pediat. 133, 629–633 (1998).

    Article  CAS  Google Scholar 

  23. Beldjord, C. et al. A novel β thalassemia gene with a single base mutation in the conserved polypyrimidine sequence at the 3´ end of IVS 2. Nucleic Acids Res. 16, 4927–4935 (1988).

    Article  CAS  Google Scholar 

  24. Coolidge, C.J., Seely, R.J. & Patton, J.G. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res. 25, 888–896 (1997).

    Article  CAS  Google Scholar 

  25. Smith, C.A., Farrah, T. & Goodwin, R.G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959–962 (1994).

    Article  CAS  Google Scholar 

  26. Frohman, M.A. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: thermal RACE. Methods Enzymol. 218, 340–356 (1993).

    Article  CAS  Google Scholar 

  27. Gyapay, G. et al. A radiation hybrid map of the human genome. Hum. Mol. Genet. 5, 339–346 (1996).

    Article  CAS  Google Scholar 

  28. Kim, U.J. et al. Construction and characterization of a human bacterial artificial chromosome library. Genomics 34, 213– 218 (1996).

    Article  CAS  Google Scholar 

  29. Arnold, C. & Hodgson, I.J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1, 39–42 (1991).

    Article  CAS  Google Scholar 

  30. Zonana, J. et al. High-resolution mapping of the X-linked hypohidrotic ectodermal dysplasia (EDA) locus. Am. J. Hum. Genet. 51, 1036–1046 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ferguson, B.M. et al. Scarcity of mutations detected in families with X linked hypohidrotic ectodermal dysplasia: diagnostic implications. J. Med. Genet. 35, 112–115 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the families for participation; referring clinicians Z. Borochowitz, C. McKeown, C. DeLozier-Blanchet, R. Jorgensen and D. Bixler; J. Zeltinger and K. Holbrook for RNA from human fetal skin; J. Murray for the human embryonic craniofacial library; and J. Hejna and M. Litt for assistance in BAC screening and radiation hybrid mapping. This work was supported by NIH grants DE11311 (J.Z.) and AR45316 (P.A.O.), as well as by a grant from the National Foundation for Ectodermal Dysplasia (J.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsy M. Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monreal, A., Ferguson, B., Headon, D. et al. Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia. Nat Genet 22, 366–369 (1999). https://doi.org/10.1038/11937

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11937

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing