Skip to main content
Log in

The role of defective glycosylation in congenital muscular dystrophy

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The dystrophin glycoprotein complex (DGC) is an assembly of proteins spanning the sarcolemma of skeletal muscle cells. Defects in the DGC appear to play critical roles in several muscular dystrophies due to disruption of basement membrane organization. O-mannosyl oligosaccharides on α-dystroglycan, a major extracellular component of the DGC, are essential for normal binding of α-dystroglycan to ligands (such as laminin) in the extracellular matrix and subsequent signal transmission to actin in the cytoskeleton of the muscle cell. Muscle-Eye-Brain disease (MEB) and Walker-Warburg Syndrome (WWS) have mutations in genes encoding glycosyltransferases needed for O-mannosyl oligosaccharide synthesis. Myodystrophic myd mice and humans with Fukuyama Congenital Muscular Dystrophy (FCMD), congenital muscular dystrophy due to defective fukutin-related protein (FKRP) and MDC1D have mutations in putative glycosyltransferases. These human congenital muscular dystrophies and the myd mouse are associated with defective glycosylation of α-dystroglycan. It is expected other congenital muscular dystrophies will prove to have mutations in genes involved in glycosylation. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Spiro RG, Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds, Glycobiology 12, 43R-56R (2002).

    Article  PubMed  CAS  Google Scholar 

  2. Montreuil J, Vliegenthart JFG, Schachter H, Glycoproteins and Disease (Elsevier, Amsterdam, The Netherlands, 1996).

    Google Scholar 

  3. Schachter H, Molecular Basis of Glycoconjugate Disease (Elsevier Science, Amsterdam, The Netherlands, 1999).

    Google Scholar 

  4. Brockhausen I, Kuhns W, Glycoproteins and Human Disease (RG Landes Co., 909 Pine St., Georgetown, TX 78626, 1997).

    Google Scholar 

  5. Aebi M, Hennet T, Congenital disorders of glycosylation: Genetic model systems lead the way, Trends Cell Biol 11, 136-41 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. Marquardt T, Freeze H, Congenital disorders of glycosylation: Glycosylation defects in man and biological models for their study, Biol Chem 382, 161-77 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. Schachter H, Congenital disorders involving defective Nglycosylation of proteins, Cellular and Molecular Life Sciences 58, 1085-1104 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. Grunewald S, Matthijs G, Jaeken J, Congenital Disorders of Glycosylation: A Review, Pediatr Res 52, 618-624 (2002).

    Article  PubMed  Google Scholar 

  9. Schachter H, Selleck SB, Developmental Glycobiology (Elsevier Science, Amsterdam, The Netherlands, 2002).

    Google Scholar 

  10. Ervasti JM, Campbell KP, Membrane organization of the dystrophin-glycoprotein complex, Cell 66, 1121-31 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP, Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle, Nature 345, 315-9 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. Winder SJ, The complexities of dystroglycan, Trends Biochem Sci 26, 118-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. Williamson RA, Henry MD, Daniels KJ, Hrstka RF, Lee JC, Sunada Y, Ibraghimov-Beskrovnaya O, Campbell KP, Dystroglycan is essential for early embryonic development: Disruption of Reichert's membrane in Dag1-null mice, Hum Mol Genet 6, 831-41 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. Henry MD, Campbell KP, A role for dystroglycan in basement membrane assembly, Cell 95, 859-70 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP, Primary structure of dystrophinassociated glycoproteins linking dystrophin to the extracellular matrix, Nature 355, 696-702 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. Holt KH, Crosbie RH, Venzke DP, Campbell KP, Biosynthesis of dystroglycan: Processing of a precursor propeptide, FEBS Lett 468, 79-83 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. Endo T, O-mannosyl glycans in mammals, Biochim Biophys Acta 1473, 237-46 (1999).

    PubMed  CAS  Google Scholar 

  18. Chiba A, Matsumura K, Yamada H, Inazu T, Shimizu T, Kusunoki S, Kanazawa I, Kobata A, Endo T, Structures of sialylated O-linked oligosaccharides of bovine peripheral nerve alphadystroglycan The role of a novel O-mannosyl-type oligosaccharide in the binding of alpha-dystroglycan with laminin, J Biol Chem 272, 2156-62 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Sasaki T, Yamada H, Matsumura K, Shimizu T, Kobata A, Endo T, Detection of O-mannosyl glycans in rabbit skeletal muscle alphadystroglycan, Biochim Biophys Acta 1425, 599-606 (1998).

    PubMed  CAS  Google Scholar 

  20. Smalheiser NR, Haslam SM, Sutton-Smith M, Morris HR, Dell A, Structural analysis of sequences O-linked to mannose reveals a novel Lewis X structure in cranin (dystroglycan) purified from sheep brain, J Biol Chem 273, 23698-703 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. Yamada H, Chiba A, Endo T, Kobata A, Anderson LV, Hori H, Fukuta-Ohi H, Kanazawa I, Campbell KP, Shimizu T, Matsumura K, Characterization of dystroglycan-laminin interaction in peripheral nerve, J Neurochem 66, 1518-24 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. Matsumura K, Chiba A, Yamada H, Fukuta-Ohi H, Fujita S, Endo T, Kobata A, Anderson LV, Kanazawa I, Campbell KP, Shimizu T, A role of dystroglycan in schwannoma cell adhesion to laminin, J Biol Chem 272, 13904-10 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. Montanaro F, Lindenbaum M, Carbonetto S, alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability, J Cell Biol 145, 1325-40. (1999).

    Article  PubMed  CAS  Google Scholar 

  24. Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S, Dystrophin-associated proteins in muscular dystrophy, Hum Mol Genet 4 Spec No, 1711-6 (1995).

    PubMed  CAS  Google Scholar 

  25. Campbell KP, Three muscular dystrophies: Loss of cytoskeletonextracellular matrix linkage, Cell 80, 675-9 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. Timpl R, Brown JC, The laminins, Matrix Biol 14, 275-81 (1994).

    Article  PubMed  CAS  Google Scholar 

  27. Wewer UM, Engvall E, Merosin/laminin-2 and muscular dystrophy, Neuromuscul Disord 6, 409-18 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. Mecham RP, Laminin receptors, Annu Rev Cell Biol 7, 71-91 (1991).

    Article  PubMed  CAS  Google Scholar 

  29. Mecham RP, Receptors for laminin on mammalian cells, Faseb J 5, 2538-46 (1991).

    PubMed  CAS  Google Scholar 

  30. Culligan KG, Mackey AJ, Finn DM, Maguire PB, Ohlendieck K, Role of dystrophin isoforms and associated proteins in muscular dystrophy (review), Int J Mol Med 2, 639-48 (1998).

    PubMed  CAS  Google Scholar 

  31. Dubowitz V, Fardeau M, Proceedings of the 27th ENMC sponsored workshop on congenital muscular dystrophy. 22-24 April 1994, The Netherlands, Neuromuscul Disord 5, 253-8 (1995).

    Article  PubMed  CAS  Google Scholar 

  32. Dubowitz V, 68th ENMC international workshop (5th international workshop): On congenital muscular dystrophy, 9-11 April 1999, Naarden, The Netherlands, Neuromuscul Disord 9, 446-54 (1999).

    Article  PubMed  CAS  Google Scholar 

  33. Dobyns WB, Pagon RA, Armstrong D, Curry CJ, Greenberg F, Grix A, Holmes LB, Laxova R, Michels VV, Robinow M, Zimmerman RL, Diagnostic criteria for Walker-Warburg syndrome, Am J Med Genet 32, 195-210 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. Voit T, Sewry CA, Meyer K, Hermann R, Straub V, Muntoni F, Kahn T, Unsold R, Helliwell TR, Appleton R, Lenard HG, Preserved merosin M-chain (or laminin-alpha 2) expression in skeletal muscle distinguishes Walker-Warburg syndrome from Fukuyama muscular dystrophy and merosin-deficient congenital muscular dystrophy, Neuropediatrics 26, 148-55 (1995).

    PubMed  CAS  Google Scholar 

  35. Vajsar J, Chitayat D, Becker LE, Ho M, Ben-Zeev B, Jay V, Severe classical congenital muscular dystrophy and merosin expression, Clin Genet 54, 193-8 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. Haltia M, Leivo I, Somer H, Pihko H, Paetau A, Kivela T, Tarkkanen A, Tome F, Engvall E, Santavuori P, Muscle-eyebrain disease: A neuropathological study, Ann Neurol 41, 173-80 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Santavuori P, Valanne L, Autti T, Haltia M, Pihko H, Sainio K, Muscle-eye-brain disease: Clinical features, visual evoked potentials and brain imaging in 20 patients, Eur J Paediatr Neurol 2, 41-7 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. Cormand B, Pihko H, Bayes M, Valanne L, Santavuori P, Talim B, Gershoni-Baruch R, Ahmad A, van Bokhoven H, Brunner HG, Voit T, Topaloglu H, Dobyns WB, Lehesjoki AE, Clinical and genetic distinction between Walker-Warburg syndrome and muscle-eye-brain disease, Neurology 56, 1059-69 (2001).

    PubMed  CAS  Google Scholar 

  39. Mostacciuolo ML, Miorin M, Martinello F, Angelini C, Perini P, Trevisan CP, Genetic epidemiology of congenital muscular dystrophy in a sample from north-east Italy, Hum Genet 97, 277- 9 (1996).

    Article  PubMed  CAS  Google Scholar 

  40. Hewitt JE, Grewal PK, Glycosylation defects in inherited muscle disease, Cell Mol Life Sci 60, 251-8 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. Martin-Rendon E, Blake DJ, Protein glycosylation in disease: New insights into the congenital muscular dystrophies, Trends Pharmacol Sci 24, 178-83 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. Martin PT, Freeze HH, Glycobiology of neuromuscular disorders, Glycobiology 13, 67R-75R (2003).

    Article  PubMed  CAS  Google Scholar 

  43. Grewal PK, Hewitt JE, Glycosylation defects: A new mechanism for muscular dystrophy? Hum Mol Genet 12 Spec No 2, R259-64 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Endo T, Toda T, Glycosylation in congenital muscular dystrophies, Biol Pharm Bull 26, 1641-7 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H, Mizuno M, Inazu T, Mitsuhashi H, Takahashi S, Takeuchi M, Herrmann R, Straub V, Talim B, Voit T, Topaloglu H, Toda T, Endo T, Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1, Dev Cell 1, 717-24 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. Brockington M, Sewry CA, Herrmann R, Naom I, Dearlove A, Rhodes M, Topaloglu H, Dubowitz V, Voit T, Muntoni F, Assignment of a form of congenital muscular dystrophy with secondary merosin deficiency to chromosome 1q42, Am J Hum Genet 66, 428-35 (2000).

    Article  PubMed  CAS  Google Scholar 

  47. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S, Benson MA, Herrmann R, Anderson LV, Bashir R, Burgunder JM, Fallet S, Romero N, Fardeau M, Straub V, Storey G, Pollitt C, Richard I, Sewry CA, Bushby K, Voit T, Blake DJ, Muntoni F, Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophyMDC1C,HumMol Genet 10, 2851-9 (2001).

    CAS  Google Scholar 

  48. Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S, Benson MA, Ponting CP, Estournet B, Romero NB, Mercuri E, Voit T, Sewry CA, Guicheney P, Muntoni F, Mutations in the fukutinrelated protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan, Am J Hum Genet 69, 1198-209 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. Brockington M, Blake DJ, Brown SC, Muntoni F, The gene for a novel glycosyltransferase is mutated in congenital muscular dystrophy MDC1C and limb girdle muscular dystrophy 2I, Neuromuscul Disord 12, 233-4 (2002).

    Article  PubMed  Google Scholar 

  50. Hayashi YK, Ogawa M, Tagawa K, Noguchi S, Ishihara T, Nonaka I, Arahata K, Selective deficiency of alpha-dystroglycan in Fukuyama-type congenital muscular dystrophy, Neurology 57, 115-21 (2001).

    PubMed  CAS  Google Scholar 

  51. Michele DE, Barresi R, Kanagawa M, Saito F, Cohn RD, Satz JS, Dollar J, Nishino I, Kelley RI, Somer H, Straub V, Mathews KD, Moore SA, Campbell KP, Post-translational disruption of dystroglycan ligand interactions in congenital muscular dystrophies, Nature 418, 417-21 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. Beltran-Valero De Bernabe D, Currier S, Steinbrecher A, Celli J, Van Beusekom E, Van Der Zwaag B, Kayserili H, Merlini L, Chitayat D, Dobyns WB, Cormand B, Lehesjoki AE, Cruces J, Voit T, Walsh CA, Van Bokhoven H, Brunner HG, Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg Syndrome, Am J Hum Genet 71, 1033-43 (2002).

    Article  PubMed  Google Scholar 

  53. Muntoni F, Brockington M, Blake DJ, Torelli S, Brown SC, Defective glycosylation in muscular dystrophy, Lancet 360, 1419- 21 (2002).

    Article  PubMed  Google Scholar 

  54. Longman C, Brockington M, Torelli S, Jimenez-Mallebrera C, Kennedy C, Khalil N, Feng L, Saran RK, Voit T, Merlini L, Sewry CA, Brown SC, Muntoni F, Mutations in the humanLARGEgene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of ?-dystroglycan, Hum Mol Genet 12, 2853-61 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Fukuyama Y, Kawazura M, Haruna H, A peculiar form of congenital progressive muscular dystrophy: Report of fifteen cases, Paediat. Univ. Tokyo 4, 5-8 (1960).

    Google Scholar 

  56. Fukuyama Y, Osawa M, Suzuki H, Congenital progressive muscular dystrophy of the Fukuyama type—Clinical, genetic and pathological considerations, Brain Dev 3, 1-29 (1981).

    PubMed  CAS  Google Scholar 

  57. Nonaka I, Sugita H, Takada K, Kumagai K, Muscle histochemistry in congenital muscular dystrophy with central nervous system involvement, Muscle Nerve 5, 102-6 (1982).

    Article  PubMed  CAS  Google Scholar 

  58. Toda T, Segawa M, Nomura Y, Nonaka I, Masuda K, Ishihara T, Sakai M, Tomita I, Origuchi Y, Suzuki M, Localization of a gene for Fukuyama type congenital muscular dystrophy to chromosome 9q31-33, Nat Genet 5, 283-6 (1993).

    Article  PubMed  CAS  Google Scholar 

  59. Toda T, Miyake M, Kobayashi K, Mizuno K, Saito K, Osawa M, Nakamura Y, Kanazawa I, Nakagome Y, Tokunaga K, Nakahori Y, Linkage-disequilibrium mapping narrows the Fukuyama-type congenital muscular dystrophy (FCMD) candidate region to <100 kb, Am J Hum Genet 59, 1313-20 (1996).

    PubMed  CAS  Google Scholar 

  60. Kobayashi K, Nakahori Y, Mizuno K, Miyake M, Kumagai T, Honma A, Nonaka I, Nakamura Y, Tokunaga K, Toda T, Founderhaplotype analysis in Fukuyama-type congenital muscular dystrophy (FCMD), Hum Genet 103, 323-7 (1998).

    Article  PubMed  CAS  Google Scholar 

  61. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T, An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy, Nature 394, 388-92 (1998).

    Article  PubMed  CAS  Google Scholar 

  62. Aravind L, Koonin EV, The fukutin protein family—Predicted enzymes modifying cell-surface molecules, Curr Biol 9, R836-7 (1999).

    Article  PubMed  CAS  Google Scholar 

  63. Breton C, Imberty A, Structure/function studies of glycosyltransferases, Curr Opin Struct Biol 9, 563-71 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, Saito K, Osawa M, Nakamura Y, Toda T, Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD), Hum Mol Genet 8, 2303-9 (1999).

    Article  PubMed  CAS  Google Scholar 

  65. Saito K, Osawa M, Wang ZP, Ikeya K, Fukuyama Y, Kondo-Iida E, Toda T, Ohashi H, Kurosawa K, Wakai S, Kaneko K, Haplotype-phenotype correlation in Fukuyama congenital muscular dystrophy, Am J Med Genet 92, 184-90 (2000).

    Article  PubMed  CAS  Google Scholar 

  66. Sasaki J, Ishikawa K, Kobayashi K, Kondo-Iida E, Fukayama M, Mizusawa H, Takashima S, Sakakihara Y, Nakamura Y, Toda T, Neuronal expression of the fukutin gene, Hum Mol Genet 9, 3083-90 (2000).

    Article  PubMed  CAS  Google Scholar 

  67. Raitta C, Lamminen M, Santavuori P, Leisti J, Ophthalmological findings in a new syndrome with muscle, eye and brain involvement, Acta Ophthalmol (Copenh) 56, 465-72 (1978).

    Article  CAS  Google Scholar 

  68. Santavuori P, Somer H, Sainio K, Rapola J, Kruus S, Nikitin T, Ketonen L, Leisti J, Muscle-eye-brain disease (MEB), Brain Dev 11, 147-53 (1989).

    PubMed  CAS  Google Scholar 

  69. Cormand B, Avela K, Pihko H, Santavuori P, Talim B, Topaloglu H, de la Chapelle A, Lehesjoki AE, Assignment of the muscleeye-brain disease gene to 1p32-p34 by linkage analysis and homozygosity mapping, Am J Hum Genet 64, 126-35 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. Zhang W, Betel D, Schachter H, Cloning and expression of a novel UDP-GlcNAc:?-D-mannoside ?-1,2-Nacetylglucosaminyltransferase homologous to UDP-GlcNAc:?-3-D-mannoside ?-1,2-N-acetylglucosaminyltransferase I, Glycobiology 11, 875 (2001).

    Article  Google Scholar 

  71. Zhang W, Betel D, Schachter H, Cloning and expression of a novel UDP-GlcNAc:alpha-D-mannoside beta1,2-N-acetylglucosaminyltransferase homologous to UDP-GlcNAc:alpha-3-Dmannoside beta1,2-N-acetylglucosaminyltransferase I, Biochem J 361, 153-62 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. Schachter H, The role of the GlcNAcbeta1,2Manalphamoiety in mammalian development. Null mutations of the genes encoding UDP-N-acetylglucosamine:alpha-3-Dmannoside beta-1,2-N-acetylglucosaminyltransferase I and UDP-N-acetylglucosamine:alpha-D-mannoside beta-1,2-Nacetylglucosaminyltransferase I.2 cause embryonic lethality and congenital muscular dystrophy in mice and men, respectively, Biochim Biophys Acta 1573, 292-300 (2002).

    PubMed  CAS  Google Scholar 

  73. Taniguchi K, Kobayashi K, Saito K, Yamanouchi H, Ohnuma A, Hayashi YK, Manya H, Jin DK, Lee M, Parano E, Falsaperla R, Pavone P, Van Coster R, Talim B, Steinbrecher A, Straub V, Nishino I, Topaloglu H, Voit T, Endo T, Toda T, Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease, Hum Mol Genet 12, 527-34 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Manya H, Sakai K, Kobayashi K, Taniguchi K, Kawakita M, Toda T, Endo T, Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle-eye-brain disease, Biochem Biophys Res Commun 306, 93-7 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Zhang W, Vajsar J, Cao P, Breningstall G, Diesen C, Dobyns W, Herrmann R, Lehesjoki A-E, Steinbrecher A, Talim B, Toda T, Topaloglu H, Voit T, Schachter H, Enzymatic diagnostic test for Muscle-Eye-Brain type Congenital Muscular Dystrophy using commercially available reagents, Clinical Biochemistry 36, 339- 44 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. Kano H, Kobayashi K, Herrmann R, Tachikawa M, Manya H, Nishino I, Nonaka I, Straub V, Talim B, Voit T, Topaloglu H, Endo T, Yoshikawa H, Toda T, Deficiency of alpha-dystroglycan in muscle-eye-brain disease, Biochem Biophys Res Commun 291, 1283-6 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. Walker AE, Lissencephaly, Arch Neurol Psychiat 48, 13-29 (1942).

    Google Scholar 

  78. Warburg M, Heterogeneity of congenital retinal non-attachment, falciform folds and retinal dysplasia. A guide to genetic counselling, Hum Hered 26, 137-48 (1976).

    Article  PubMed  CAS  Google Scholar 

  79. Warburg M, The heterogeneity of microphthalmia in the mentally retarded, Birth Defects Orig Art Ser 7, 136-54 (1971).

    CAS  PubMed  Google Scholar 

  80. Warburg M, Hydrocephaly, congenital retinal nonattachment, and congenital falciform fold, Am J Ophthalmol 85, 88-94 (1978).

    PubMed  CAS  Google Scholar 

  81. Wewer UM, Durkin ME, Zhang X, Laursen H, Nielsen NH, Towfighi J, Engvall E, Albrechtsen R, Laminin beta 2 chain and adhalin deficiency in the skeletal muscle ofWalker-Warburg syndrome (cerebro-ocular dysplasia-muscular dystrophy), Neurology 45, 2099-101 (1995).

    PubMed  CAS  Google Scholar 

  82. Jurado LA, Coloma A, Cruces J, Identification of a human homolog of the Drosophila rotated abdomen gene (POMT1) encoding a putative protein O-mannosyl-transferase, and assignment to human chromosome 9q34.1, Genomics 58, 171-80 (1999).

    Article  PubMed  CAS  Google Scholar 

  83. Manya H, Chiba A, Yoshida A, Wang X, Chiba Y, Jigami Y, Margolis RU, Endo T, Demonstration of mammalian protein O-mannosyltransferase activity: Coexpression of POMT1 and POMT2 required for enzymatic activity, Proc Natl Acad Sci USA 101, 500-5 (2004).

    Article  PubMed  CAS  Google Scholar 

  84. Driss A, Amouri R, Ben Hamida C, Souilem S, Gouider-Khouja N, Ben Hamida M, Hentati F, A new locus for autosomal recessive limb-girdle muscular dystrophy in a large consanguineous Tunisian family maps to chromosome 19q13.3, Neuromuscul Disord 10, 240-6 (2000).

    Article  PubMed  CAS  Google Scholar 

  85. Peyrard M, Seroussi E, Sandberg-Nordqvist AC, Xie YG, Han FY, Fransson I, Collins J, Dunham I, Kost-Alimova M, Imreh, S Dumanski JP, The human LARGE gene from 22q12.3-q13.1 is a new, distinct member of the glycosyltransferase gene family, Proceedings of the National Academy of Sciences of the United States of America 96, 598-603 (1999).

    Article  PubMed  CAS  Google Scholar 

  86. Grewal PK, Hewitt JE, Mutation of Large, which encodes a putative glycosyltransferase, in an animal model of muscular dystrophy, Biochim Biophys Acta 1573, 216-24 (2002).

    PubMed  CAS  Google Scholar 

  87. Lane PW, Beamer TC, Myers DD, Myodystrophy, a new myopathy on chromosome 8 of the mouse, J Hered 67, 135-8 (1976).

    PubMed  CAS  Google Scholar 

  88. Mathews KD, Rapisarda D, Bailey HL, Murray JC, Schelper RL, Smith R, Phenotypic and pathologic evaluation of the myd mouse. A candidate model for facioscapulohumeral dystrophy, J Neuropathol Exp Neurol 54, 601-6 (1995).

    PubMed  CAS  Google Scholar 

  89. Mathews KD, Mills KA, Bailey HL, Schelper RL, Murray JC, Mouse myodystrophy (myd) mutation: Refined mapping in an interval flanked by homology with distal human 4q, Muscle Nerve 2, S98-102 (1995).

    Article  PubMed  CAS  Google Scholar 

  90. Mills KA, Mathews KD, Scherpbier-Heddema T, Schelper RL, Schmalzel R, Bailey HL, Nadeau JH, Buetow KH, Murray JC, Genetic mapping near the myd locus on mouse chromosome 8, Mamm Genome 6, 278-80 (1995).

    Article  PubMed  CAS  Google Scholar 

  91. Grewal PK, van Deutekom JC, Mills KA, Lemmers RJ, Mathews KD, Frants RR, Hewitt JE, The mouse homolog of FRG1, a candidate gene for FSHD, maps proximal to the 300 Schachter, Vajsar and Zhang myodystrophy mutation on chromosome 8, Mamm Genome 8, 394-8 (1997).

    Article  PubMed  CAS  Google Scholar 

  92. Grewal PK, Holzfeind PJ, Bittner RE, Hewitt JE, Mutant glycosyltransferase and altered glycosylation of alpha-dystroglycan in the myodystrophy mouse, Nat Genet 28, 151-4 (2001).

    Article  PubMed  CAS  Google Scholar 

  93. Holzfeind PJ, Grewal PK, Reitsamer HA, Kechvar J, Lassmann H, Hoeger H, Hewitt JE, Bittner RE, Skeletal, cardiac and tongue muscle pathology, defective retinal transmission, and neuronal migration defects in the Large(myd) mouse defines a natural model for glycosylation-deficient muscle-eye-brain disorders, Hum Mol Genet 11, 2673-87 (2002).

    Article  PubMed  CAS  Google Scholar 

  94. Moore SA, Saito F, Chen J, Michele DE, Henry MD, Messing A, Cohn RD, Ross-Barta SE, Westra S, Williamson RA, Hoshi T, Campbell KP, Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy, Nature 418, 422-5 (2002).

    Article  PubMed  CAS  Google Scholar 

  95. Tsuji S, Datta AK, Paulson JC, Systematic nomenclature for sialyltransferases, Glycobiology 6, R5-7 (1996).

    Google Scholar 

  96. Amado M, Almeida R, Schwientek T, Clausen H, Identification and characterization of large galactosyltransferase gene families: Galactosyltransferases for all functions, Biochim Biophys Acta 1473, 35-53 (1999).

    PubMed  CAS  Google Scholar 

  97. Chai W, Yuen CT, Kogelberg H, Carruthers RA, Margolis RU, Feizi T, Lawson AM, High prevalence of 2-mono-and 2,6-disubstituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis, Eur J Biochem 263, 879-88 (1999).

    Article  PubMed  CAS  Google Scholar 

  98. Inamori KI, Endo T, Ide Y, Fujii S, Gu J, Honke K, Taniguchi N, Molecular cloning and characterization of human GnT-IX, a novel beta 1,6-N-acetylglucosaminyltransferase that is specifically expressed in the brain, J Biol Chem 278, 43102-9 (2003).

    Article  PubMed  CAS  Google Scholar 

  99. Inamori K, Endo T, Gu J, Matsuo I, Ito Y, Fujii S, Iwasaki H, Narimatsu H, Miyoshi E, Honke K, Taniguchi N, N-acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan, J Biol Chem 279, 2337-40 (2004).

    Article  PubMed  CAS  Google Scholar 

  100. Kaneko M, Alvarez-Manilla G, Kamar M, Lee I, Lee JK, Troupe K, Zhang W, Osawa M, Pierce M, A novel beta(1,6)-Nacetylglucosaminyltransferase V (GnT-VB)(1), FEBS Lett 554, 515-9 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Schachter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schachter, H., Vajsar, J. & Zhang, W. The role of defective glycosylation in congenital muscular dystrophy. Glycoconj J 20, 291–300 (2003). https://doi.org/10.1023/B:GLYC.0000033626.65127.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000033626.65127.e4

Navigation