Skip to main content
Log in

Genetic susceptibility to prostate cancer: a review

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

A genetic component in prostate cancer has been recognized since decades. Through numerous epidemiological and molecular biological studies, much evidence has accumulated in favor of a significant but heterogeneous hereditary component in prostate cancer (PCa) susceptibility. Since the mapping of a high-penetrant PCa susceptibility locus at 1q24–25, much attention has been paid to the identification of PCa susceptibility genes. So far, seven loci have been mapped, and at three of these loci, genes have been cloned and mutations identified. Yet their role in hereditary and sporadic disease is still under debate and probably very modest. Although research on hereditary prostate cancer has improved our knowledge of the genetic etiology of the disease, still a lot of questions remain unanswered. Here, we aim to review the genetic epidemiological and molecular biological research in the field of hereditary prostate cancer and the problems that are encountered with this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Stanford JL, Ostrander EA. Familial prostate cancer. Epidemiol Rev 2001; 23: 19–23.

    PubMed  Google Scholar 

  2. Whittemore AS, Wu AH, Kolonel LN et al. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 1995; 141: 732–40.

    PubMed  Google Scholar 

  3. Grönberg H, Damber L, Damber JE. Studies of genetic factors in prostate cancer in a twin population. J Urol 1994; 152: 1484–9.

    PubMed  Google Scholar 

  4. Page WF, Braun MM, Partin AW et al. Heredity and prostate cancer: a study of World War II veteran twins. Prostate 1997; 33: 240–5.

    Article  PubMed  Google Scholar 

  5. Lichtenstein P, Holm NV, Verkasalo PK et al. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: 78–85.

    Article  PubMed  Google Scholar 

  6. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in firstdegree relatives of cancer probands. J Natl Cancer Inst 1994; 86: 1600–8.

    PubMed  Google Scholar 

  7. Isaacs SD, Kiemeney LA, Baffoe-Bonnie A et al. Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 1995; 87: 991–6.

    PubMed  Google Scholar 

  8. Grönberg H, Bergh A, Damber JE, Emanuelsson M. Cancer risk in families with hereditary prostate carcinoma. Cancer 2000; 89: 1315–21.

    Article  PubMed  Google Scholar 

  9. Matikainen MP, Pukkala E, Schleutker J et al. Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 2001; 12: 223–30.

    Article  PubMed  Google Scholar 

  10. Damber L, Grönberg H, Damber JE. Familial prostate cancer and possible associated malignancies: nation-wide register cohort study in Sweden. Int J Cancer 1998; 78: 293–297.

    Article  PubMed  Google Scholar 

  11. Valeri A, Fournier G, Morin V et al. Early onset and familial predisposition to prostate cancer significantly enhance the probability for breast cancer in first degree relatives. Int J Cancer 2000; 86: 883–7.

    Article  PubMed  Google Scholar 

  12. Keetch DW, Rice JP, Suarez BK, Catalona WJ. Familial aspects of prostate cancer: a case control study. J Urol 1995; 154: 2100–2.

    Article  PubMed  Google Scholar 

  13. Bratt O, Kristoffersson U, Lundgren R, Olsson H. The risk of malignant tumours in first-degree relatives of men with early onset prostate cancer: a population-based cohort study. Eur J Cancer 1997; 33: 2237–40.

    Article  PubMed  Google Scholar 

  14. Carter BS, Beaty TH, Steinberg GD et al. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci USA 1992; 89: 3367–71.

    PubMed  Google Scholar 

  15. Grönberg H, Damber L, Damber JE, Iselius L. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 1997; 146: 552–7.

    PubMed  Google Scholar 

  16. Schaid DJ, McDonnell SK, Blute ML, Thibodeau SN. Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 1998; 62: 1425–38.

    Article  PubMed  Google Scholar 

  17. Verhage BA, Baffoe-Bonnie AB, Baglietto L et al. Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 2001; 57: 97–101.

    Article  PubMed  Google Scholar 

  18. Cui J, Staples MP, Hopper JL et al. Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 2001; 68: 1207–18.

    Article  PubMed  Google Scholar 

  19. Gong G, Oakley-Girvan I, Wu AH et al. Segregation analysis of prostate cancer in 1719 white, African-American, and Asian-American families in the United States and Canada. Cancer Causes Control 2002; 13: 471–82.

    Article  PubMed  Google Scholar 

  20. Ostrander EA, Stanford JL. Genetics of prostate cancer: too many loci, too few genes. Am J Hum Genet 2000; 67: 1367–75.

    Article  PubMed  Google Scholar 

  21. Smith JR, Freije D, Carpten JD et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genomewide search. Science 1996; 274: 1371–4.

    Article  PubMed  Google Scholar 

  22. Gronberg H, Xu J, Smith JR et al. Early age at diagnosis in families providing evidence of linkage to thehereditary prostate cancer locus (HPC1) on chromosome 1. Cancer Res 1997; 57: 4707–9.

    PubMed  Google Scholar 

  23. Xu J. Combined analysis of hereditary prostate cancer linkage to 1q24–25: results from 772 hereditary prostate cancer families from the International Consortium for Prostate Cancer Genetics. Am J Hum Genet 2000; 66: 945–57.

    Article  PubMed  Google Scholar 

  24. Cooney KA, McCarthy JD, Lange E et al. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997; 89: 955–9.

    Article  PubMed  Google Scholar 

  25. Hsieh CL, Oakley-Girvan I, Gallagher RP et al. Re: prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst 1997; 89: 1893–4.

    Article  PubMed  Google Scholar 

  26. McIndoe RA, Stanford JL, Gibbs M et al. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24–25. Am J Hum Genet 1997; 61: 347–53.

    PubMed  Google Scholar 

  27. Eeles RA, Durocher F, Edwards S et al. Linkage analysis of chromo-some 1q markers in 136 prostate cancer families. The Cancer Research Campaign/British Prostate Group UK Familial Prostate Cancer Study Collaborators. Am J Hum Genet 1998; 62: 653–8.

    Article  PubMed  Google Scholar 

  28. Carpten J, Nupponen N, Isaacs S et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30: 181–4.

    Article  PubMed  Google Scholar 

  29. Rokman A, Ikonen T, Seppala EH et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am J Hum Genet 2002; 70: 1299–304.

    Article  PubMed  Google Scholar 

  30. Berthon P, Valeri A, Cohen-Akenine A et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 1998; 62: 1416–24.

    Article  PubMed  Google Scholar 

  31. Xu J, Meyers D, Freije D, Isaacs S et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998; 20: 175–9.

    Article  PubMed  Google Scholar 

  32. Gibbs M, Stanford JL, McIndoe RA et al. Evidence for a rare prostate cancer-susceptibility locus at chromosome 1p36. Am J Hum Genet 1999; 64: 776–87.

    Article  PubMed  Google Scholar 

  33. Berry, R, Schroeder, JJ, French AJ et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum 2000; 67: 82–91.

    Article  Google Scholar 

  34. Xu J, Zheng SL, Hawkins GA et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 2001; 69: 341–50.

    Article  PubMed  Google Scholar 

  35. Cancel-Tassin G, Latil A, Valeri A et al. PCAP is the major known prostate cancer predisposing locus in families from south and west Europe. Eur J Hum Genet 2001; 9: 135–42.

    PubMed  Google Scholar 

  36. Gibbs M, Chakrabarti L, Stanford JL et al. Analysis of chromosome 1q42.2–43 in 152 families with high risk of prostate cancer. Am J Hum Genet 1999; 64: 1087–95.

    Article  PubMed  Google Scholar 

  37. Schleutker J, Matikainen M, Smith J et al. A genetic epidemiological study of hereditary prostate cancer (HPC) in Finland: frequent HPCX linkage in families with late-onset disease. Clin Cancer Res 2000; 6: 4810–5.

    PubMed  Google Scholar 

  38. Cunningham JM, Shan A, Wick MJ et al. Allelic imbalance and microsatellite instability in prostatic adenocarcinoma. Cancer Res 1996; 56: 4475–82.

    PubMed  Google Scholar 

  39. Bock CH, Cunningham JM, McDonnell SK et al. Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am J Hum Genet 2001; 68: 795–801.

    Article  PubMed  Google Scholar 

  40. Cancel-Tassin G, Latil A, Valeri A et al. No evidence of linkage to HPC20 on chromosome 20q13 in hereditary prostate cancer. Int J Cancer 2001; 93: 455–6.

    Article  PubMed  Google Scholar 

  41. Xu J, Zheng SL, Komiya A et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002; 32: 321–5.

    Article  PubMed  Google Scholar 

  42. Tavtigian SV, Simard J, Teng HF et al. A strong candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–80.

    Article  PubMed  Google Scholar 

  43. Ingles SA, Ross RK, Yu MC et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J Natl Cancer Inst 1997; 89: 166–70.

    Article  PubMed  Google Scholar 

  44. Giovannucci E, Stampfer MJ, Krithivas K et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997; 94: 3320–3.

    Article  PubMed  Google Scholar 

  45. Stanford JL, Just JJ, Gibbs M et al. Polymorphic repeats in the androgen receptor gene: molecular markers of prostate cancer risk. Cancer Res 1997; 57: 1194–8.

    PubMed  Google Scholar 

  46. Hsing AW, Gao YT, Wu G et al. Polymorphic CAG and GGN repeat lengths in the androgen receptor gene and prostate cancer risk: a population-based case-control study in China. Cancer Res 2000; 60: 5111–6.

    PubMed  Google Scholar 

  47. Reichardt JK, Makridakis N, Henderson BE et al. Genetic variability of the human SRD5A2 gene: implications for prostate cancer risk. Cancer Res 1995; 55: 3973–5.

    PubMed  Google Scholar 

  48. Kantoff PW, Febbo PG, Giovannucci E et al. A polymorphism of the 5 alpha-reductase gene and its association with prostate cancer: a case-control analysis. Cancer Epidemiol Biomarkers Prev 1997; 6: 189–92.

    PubMed  Google Scholar 

  49. Lunn RM, Bell DA, Mohler JL, Taylor JA. Prostate cancer risk and polymorphism in 17 hydroxylase (CYP17) and steroid reductase (SRD5A2). Carcinogenesis 1999; 20: 1727–31.

    Article  PubMed  Google Scholar 

  50. Febbo PG, Kantoff PW, Platz EA et al. The V89L polymorphism in the 5alpha-reductase type 2 gene and risk of prostate cancer. Cancer Res 1999; 59: 5878–81.

    PubMed  Google Scholar 

  51. Makridakis NM, Ross RK, Pike MC et al. Association of missense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 1999; 354: 975–8.

    Article  PubMed  Google Scholar 

  52. Ingles SA, Coetzee GA, Ross RK et al. Association of prostate cancer with vitamin D receptor haplotypes in African-Americans. Cancer Res 1998; 58: 1620–3.

    PubMed  Google Scholar 

  53. Blazer DG 3rd, Umbach DM, Bostick RM, Taylor JA. Vitamin D receptor polymorphisms and prostate cancer. Mol Carcinog 2000; 27: 18–23.

    Article  PubMed  Google Scholar 

  54. Taylor JA, Hirvonen A, Watson M et al. Association of prostate cancer with vitamin D receptor gene polymorphism. Cancer Res 1996; 56: 4108–10.

    PubMed  Google Scholar 

  55. Rebbeck TR, Walker AH, Zeigler-Johnson C et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000; 67: 1014–9.

    Article  PubMed  Google Scholar 

  56. Xu J, Zheng SL, Carpten JD et al. Linkage and association of HPC2/ELAC2. Am J Hum Genet 2000; 68: 901–1.

    Article  Google Scholar 

  57. Suarez BK, Gerhard DS, Lin J et al. Polymorphisms in the prostate cancer susceptibility gene HPC2/ELAC2 in multiplex families and healthy controls. Cancer Res 2001; 61: 4982–4.

    PubMed  Google Scholar 

  58. Wang L, McDonnell SK, Elkins DA et al. Role of HPC2/ELAC2 in hereditary prostate cancer. Cancer Res 2001; 61: 6494–9.

    PubMed  Google Scholar 

  59. Vesprini D, Nam RK, Trachtenberg J et al. HPC2 variants and screen-detected prostate cancer. Am J Hum Genet 2000; 68: 912–7.

    Article  Google Scholar 

  60. Rokman A, Ikonen T, Mononen N et al. ELAC2/HPC2 involvement in hereditary and sporadic prostate cancer. Cancer Res 2001; 61: 6038–41.

    PubMed  Google Scholar 

  61. Verhage BA, Van Houwelingen K, Ruijter TE et al. Singlenucleotide polymorphism in the E-cadherin gene promoter modifies the risk of prostate cancer. Int J Cancer 2002; 100: 683–5.

    Article  PubMed  Google Scholar 

  62. Coughlin SS, Hall IJ. A review of genetic polymorphisms and prostate cancer risk. Ann Epidemiol 2002; 12: 182–96.

    Article  PubMed  Google Scholar 

  63. Collins N, McNamusn R, Wooster R et al. Consistant loss of the wild type allele in breast cancers from a family linked to the BRCA2 gene on chromosome 13q12–13. Oncogene 1995; 10: 1673–5

    PubMed  Google Scholar 

  64. Ford D, Easton DF, Stratton M et al. and Breast Cancer Linkage Consortium. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet 1998; 62: 676–89.

    Article  PubMed  Google Scholar 

  65. Knudson AG. Hereditary cancer, oncogenes and antioncogenes. Cancer Res 1985; 45: 1437–43.

    PubMed  Google Scholar 

  66. Latil A, Lidereau R. Genetic aspects of prostate cancer. Virchows Arch 1998; 432: 389–406.

    Article  PubMed  Google Scholar 

  67. Dunsmuir WD, Edwards SM, Lakhani SR et al. Allelic imbalance in familial and sporadic prostate cancer at the putative human prostate cancer susceptibility locus, HPC1. Br J Cancer 1998; 78: 1430–3.

    PubMed  Google Scholar 

  68. Åhman AK, Jonsson BA, Damber JE et al. Low frequency of allelic imbalance at the prostate cancer susceptibility loci HPC1 and 1p36 in Swedish men with hereditary prostate cancer. Genes Chromosomes Cancer 2000; 29: 292–6.

    Article  PubMed  Google Scholar 

  69. Bergthorsson JT, Johannesdottir G, Arason A et al. Analysis of HPC1, HPCX, and PCaP in Icelandic hereditary prostate cancer. Hum Genet 2000; 107: 372–5.

    Article  PubMed  Google Scholar 

  70. Paris PL, Witte JS, Kupelian PA et al. Case-identification and fine mapping of a region showing a high frequency of allelic imbalance on chromosome 16q23.2 that corresponds to a prostate cancer susceptibility locus. Cancer Res 2000; 60: 3645–9.

    PubMed  Google Scholar 

  71. Verhage BAJ, Houwelingen van KP, Ruijter TEG et al. Allelic imbalance in hereditary and sporadic prostate cancer. Prostate 2003; 54: 50–7.

    Article  PubMed  Google Scholar 

  72. Verhagen PC, Zhu XL, Rohr LR et al. Microdissection, DOPPCR, and comparative genomic hybridization of paraffinembedded familial prostate cancers. Cancer Genet Cytogenet 2000; 122: 43–8.

    Article  PubMed  Google Scholar 

  73. Rokman A, Koivisto PA, Matikainen MP et al. Genetic changes in familial prostate cancer by comparative genomic hybridization. Prostate 2001; 46: 233–9.

    Article  PubMed  Google Scholar 

  74. Carter BS, Bova GS, Beaty TH et al. Hereditary prostate cancer: epidemiologic and clinical features. J Urol 1993; 150: 797–80.

    PubMed  Google Scholar 

  75. Bastacky SI, Wojno KJ, Walsh PC et al. Pathological features of hereditary prostate cancer. J Urol 1995; 153: 987–92.

    Article  PubMed  Google Scholar 

  76. Bova GS, Partin AW, Isaacs SD et al. Biological aggressiveness of hereditary prostate cancer: long-term evaluation following radical prostatectomy. J Urol 1998; 160: 660–3.

    Article  PubMed  Google Scholar 

  77. Keetch DW, Humphrey PA, Smith DS et al. Clinical and pathological features of hereditary prostate cancer. J Urol 1996; 155; 1841–43.

    Article  PubMed  Google Scholar 

  78. Grönberg H, Damber L, Tavelin B, Damber JE. No differences in survival between sporadic, familial and hereditary prostate cancer. Br J Urol 1998; 82: 564–7.

    PubMed  Google Scholar 

  79. Grönberg H, Isaacs SD, Isaacs MS et al. Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA 1997; 278; 1251–5.

    Article  PubMed  Google Scholar 

  80. Laniado ME. Prostate cancer potentially linked to the HPC1 gene. JAMA 1997 15; 278: 1251–5.

    Google Scholar 

  81. Walther MM. Prostate cancer potentially linked to the HPC1 gene. JAMA 1997 15; 278: 1251–5.

    Google Scholar 

  82. Valeri A, Azzouzi R, Drelon E et al. Early-onset hereditary prostate cancer is not associated with specific clinical and biological features. Prostate 2000; 45: 66–71.

    Article  PubMed  Google Scholar 

  83. Bratt O, Damber JE, Emanuelsson M, Grönberg H. Hereditary prostate cancer: clinical characteristics and survival. J Urol 2002; 167: 2423–6.

    Article  PubMed  Google Scholar 

  84. Witte JS, Goddard KA, Conti DV et al. Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 2000; 67: 92–9.

    Article  PubMed  Google Scholar 

  85. Bratt O, Damber JE, Emanuelsson M et al. Risk perception, screening practice and interest in genetic testing among unaffected men in families with hereditary prostate cancer. Eur J Cancer 2000; 36: 235–41.

    Article  PubMed  Google Scholar 

  86. Miesfeldt S, Jones SM, Cohn W et al. Men’ attitudes regarding genetic testing for hereditary prostate cancer risk. Urology 2000; 55: 46–50.

    Article  PubMed  Google Scholar 

  87. Neal DE, Donovan JL. Prostate cancer: to screen or not to screen. Lancet Oncol 2000; 1: 17–24.

    Article  PubMed  Google Scholar 

  88. Matikainen MP, Schleutker J, Morsky P et al. Detection of subclinical cancers by prostate-specific antigen screening in asymptomatic men from high-risk prostate cancer families. Clin Cancer Res 1999; 5: 1275–9.

    PubMed  Google Scholar 

  89. Walsh PC, Partin AW. Family history facilitates the early diagnosis of prostate carcinoma. Cancer 1997; 80: 1871–4.

    Article  PubMed  Google Scholar 

  90. Nelson PS, Stanford JL, Ostrander EA. Prostate cancer research in the post-genome era. Epidemiol Rev 2001; 23: 187–90.

    PubMed  Google Scholar 

  91. DeRisi J, Penland L, Brown PO et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14: 457–60.

    Article  PubMed  Google Scholar 

  92. Kononen J, Bubendorf L, Kallioniemi A et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 1998; 4: 844–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhage, B.A.J., Kiemeney, L.A.L.M. Genetic susceptibility to prostate cancer: a review. Familial Cancer 2, 57–67 (2003). https://doi.org/10.1023/A:1023299520828

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023299520828

Navigation