Skip to main content
Log in

Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

An increasing number of mismatch-repair (MMR) gene mutations have been identified in hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. This study presents the population-based Danish MMR gene mutation profile, which contains 138 different MMR gene alterations. Among these, 88 mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics and suggests that directed analysis of recurrent/founder mutations may be feasible e.g. in families were diagnostic material is restricted to archival tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bronner CF, Baker SM, Morrison PT et al (1994) Mutations in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colorectal cancer. Nature 368:258–261. doi:10.1038/368258a0

    Article  PubMed  CAS  Google Scholar 

  2. Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homologue MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038. doi:10.1016/0092-8674(93)90546-3

    Article  PubMed  CAS  Google Scholar 

  3. Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225. doi:10.1016/0092-8674(93)90330-S

    Article  PubMed  CAS  Google Scholar 

  4. Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629. doi:10.1126/science.8128251

    Article  PubMed  CAS  Google Scholar 

  5. Woods MO, Williams P, Careen A et al (2007) A new variant database for mismatch repair genes associated with Lynch syndrome. Hum Mutat 28:669–673. doi:10.1002/humu.20502

    Article  PubMed  CAS  Google Scholar 

  6. Peltomaki P, Vasen H (2004) Mutations associated with HNPCC predisposition – update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 20:269–276

    PubMed  Google Scholar 

  7. Vasen HF, Watson P, Mecklin J-P, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116:1453–1456. doi:10.1016/S0016-5085(99)70510-X

    Article  PubMed  CAS  Google Scholar 

  8. Bisgaard ML, Jäger AC, Myrhoj T, Bernstein I, Nielsen FC (2002) Hereditary non-polyposis colorectal cancer (HNPCC): phenotype–genotype correlation between patients with and without identified mutation. Hum Mutat 20:20–27. doi:10.1002/humu.10083

    Article  PubMed  CAS  Google Scholar 

  9. Katballe N, Christensen M, Wikman FP, Orntoft TF, Laurberg S (2002) Frequency of hereditary non-polyposis colorectal cancer in Danish colorectal cancer patients. Gut 50:43–51. doi:10.1136/gut.50.1.43

    Article  PubMed  CAS  Google Scholar 

  10. Roncari B, Pedroni M, Maffel S et al (2007) Frequency of constitutional MSH6 mutations in a consecutive series of families with clinical suspicion of HNPCC. Clin Genet 72:230–237. doi:10.1111/j.1399-0004.2007.00856.x

    Article  PubMed  CAS  Google Scholar 

  11. Umar A, Boland CR, Terdiman JP et al (2004) Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96:261–268

    Article  PubMed  CAS  Google Scholar 

  12. Mitchell RJ, Farrington SM, Dunlop MG, Campbell H (2002) Mismatch repair genes hMLH1 and hMSH2 in colorectal cancer: a HuGE review. Am J Epidemiol 15:865–902

    Google Scholar 

  13. Wijnen J, Meera Khan P, Vasen H et al (1996) Majority of hMLH1 mutations responsible for hereditary nonpolyposis colorectal cancer cluster at the exonic region 15–16. Am J Hum Genet 58:3000–3007

    Google Scholar 

  14. Baudhuin LM, Ferber MJ, Winters JL et al (2005) Characterization of hMLH1 and hMSH2 gene dosage alterations in Lynch syndrome patients. Gastroenterology 129:846–854. doi:10.1053/j.gastro.2005.06.026

    Article  PubMed  CAS  Google Scholar 

  15. Grabrovski M, Mueller-Koch Y, Grasbon-Frodl E et al (2005) Deletions account for 17% of the pathogenetic germline alterations in MLH1 and MSH2 in hereditary nonpolyposis colorectal cancer (HNPCC) families. Genet Test 9:138–146. doi:10.1089/gte.2005.9.138

    Article  Google Scholar 

  16. Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR (2003) Genomic deletions in MSH2 or MLH1 are frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat 22:428–433. doi:10.1002/humu.10291

    Article  PubMed  CAS  Google Scholar 

  17. Foulkes WD, Thiffault I, Gruber SB et al (2002) The founder mutation MSH2*1906G>C is an important cause of hereditary nonpolyposis colorectal cancer in Askenazi jewish population. Am J Hum Genet 71:1395–1412. doi:10.1086/345075

    Article  PubMed  CAS  Google Scholar 

  18. Jäger AC, Rasmussen M, Bisgaard HC et al (2001) HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLa and hMLH1-hEXO1 complexes. Oncogene 20:3590–3595. doi:10.1038/sj.onc.1204467

    Article  PubMed  Google Scholar 

  19. Kondo E, Suzuki H, Horii A, Fukushige S (2003) A yeast two-hybrid assay provides a simple way to evaluate the vast majority of hMLH1 germ-line mutations. Cancer Res 63:3302–3308

    PubMed  CAS  Google Scholar 

  20. Ollila S, Sarantaus L, Kariola R et al (2006) Pathogenicity of MSH2 missense mutations is typically associated with impaired repair capability of the mutated protein. Gastroenterology 131:1408–1417. doi:10.1053/j.gastro.2006.08.044

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi M, Shimodaira H, Andreutti-Zaugg C et al (2007) Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays. Cancer Res 67:4595–4604. doi:10.1158/0008-5472.CAN-06-3509

    Article  PubMed  CAS  Google Scholar 

  22. Raevaara TE, Gerdes A-M, Lönnqvist KE et al (2004) HNPCC mutation MLH1 P648S makes the functional protein unstable, and homozygosity predisposes to mild neurofibromatosis. Genes Chromosomes Cancer 40:261–265. doi:10.1002/gcc.20040

    Article  PubMed  CAS  Google Scholar 

  23. Desai DC, Lockman JC, Chadwick RB et al (2000) Recurrent germline mutation in MSH2 arises frequently de novo. J Med Genet 37:646–652. doi:10.1136/jmg.37.9.646

    Article  PubMed  CAS  Google Scholar 

  24. Froggatt NJ, Geen J, Bassett C et al (1999) A common MSH2 mutation in English and North American HNPCC families: origin, phenotypic expression, and sex specific differences in colorectal cancer. J Med Genet 36:97–102

    PubMed  CAS  Google Scholar 

  25. Mangold E, Pagenstecher C, Friedl W et al (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116:692–702. doi:10.1002/ijc.20863

    Article  PubMed  CAS  Google Scholar 

  26. Miyaki M, Konishi M, Muraoka M et al (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73:515–520. doi:10.1007/BF00198903

    Article  PubMed  CAS  Google Scholar 

  27. Wagner A, Barrows A, Wijnen JT et al (2003) Molecular analysis of hereditary non-polyposis colorectal cancer in the United States: High mutation detection rates among clinically selected families and characterization of an American founder genomic deletion of the MSH2 gene. Am J Hum Genet 72:1088–1100. doi:10.1086/373963

    Article  PubMed  CAS  Google Scholar 

  28. Nystrom-Lathi M, Kristo P, Nicolaides NC et al (1995) Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med 1:1203–1206. doi:10.1038/nm1195-1203

    Article  Google Scholar 

  29. Sun S, Greenwood CM, Thuffault I et al (2005) The HNPCC associated MSH2*1906G-C founder mutation probably originated between 1440 and 1715 in the Ashkenazi Jewish population. J Med Genet 42:766–768. doi:10.1136/jmg.2005.030999

    Article  PubMed  CAS  Google Scholar 

  30. Jäger AC, Bisgaard ML, Myrhöy T et al (1997) Reduced frequency of extracolonic cancers in hereditary nonpolyposis colorectal cancer families with monoallelic hMLH1 expression. Am J Hum Genet 61:129–138. doi:10.1086/513896

    Article  PubMed  Google Scholar 

  31. Malander S, Rambech E, Kristoffersson U et al (2006) The contribution of the hereditary nonpolyposis colorectal cancer syndrome to the development of ovarian cancer. Gynecol Oncol 101:238–243. doi:10.1016/j.ygyno.2005.10.029

    Article  PubMed  CAS  Google Scholar 

  32. Lagerstedt RK, Liu T, Vandrovcova J et al (2007) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99:291–299. doi:10.1093/jnci/djk051

    Article  PubMed  CAS  Google Scholar 

  33. Hendriks YM, Wagner A, Morreau H et al (2004) Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127:17–25. doi:10.1053/j.gastro.2004.03.068

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was granted from the Danish Cancer Society and from the Hvidovre University Hospital. We would also like to acknowledge surgeons, pathologists, and geneticists for identifying these families and reporting data to the national HNPCC-register.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mef Nilbert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilbert, M., Wikman, F.P., Hansen, T.V.O. et al. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Familial Cancer 8, 75–83 (2009). https://doi.org/10.1007/s10689-008-9199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-008-9199-3

Keywords

Navigation