Skip to main content

Advertisement

Log in

RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The Marfan syndrome (MFS), a relatively common autosomal dominant disorder of connective tissue, is caused by mutations in the gene for fibrillin-1 (FBN1). Fibrillin-1 is the main component of the 10- to 12-nm microfibrils that together with elastin form elastic fibers found in tissues such as the aortic media. Recently, FBN1 mutations have been shown to increase the susceptibility of fibrillin-1 to proteolysis in vitro, and other findings suggest that up-regulation of matrix metalloproteinases (MMP), as well as fragmentation of microfibrils, could play a role in the pathogenesis of MFS. In the present work, we have investigated the influence of fibrillin-1 fragments on the expression of MMP-1, MMP-2, and MMP-3 in a cell culture system. Cultured human dermal fibroblasts were incubated with several different recombinant fibrillin-1 fragments. The expression level of MMP-1, MMP-2, and MMP-3, was determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and the concentration of the corresponding proteins was estimated by quantitative Western blotting. Our results establish that treatment of cultured human dermal fibroblasts with recombinant fibrillin-1 fragments containing the arginine–glycine–aspartic acid (RGD) integrin-binding motif of fibrillin-1 induces up-regulation of MMP-1 and MMP-3. A similar effect was seen upon stimulation with a synthetic RGD peptide. The expression of MMP-2 was not influenced by treatment. Our results suggest the possibility that fibrillin fragments could themselves have pathogenic effects by leading to up-regulation of MMPs, which in turn may be involved in the progressive breakdown of microfibrils thought to play a role in MFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a-c
Fig. 3a,b
Fig. 4a,b

Similar content being viewed by others

References

  • Ashworth JL, Murphy G, Rock MJ, Sherratt MJ, Shapiro SD, Shuttleworth CA, Kielty CM (1999) Fibrillin degradation by matrix metalloproteinases: implications for connective tissue remodelling. Biochem J 340:171–181

    Article  CAS  PubMed  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by α5β1 and αvβ3 integrins. J Biol Chem 278:34605–34616

    Article  CAS  PubMed  Google Scholar 

  • Benbow U, Brinckerhoff CE (1997) The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol 15:519–526

    Article  CAS  PubMed  Google Scholar 

  • Bendeck MP, Irvin C, Reidy M, Smith L, Mulholland D, Horton M, Giachelli CM (2000) Smooth muscle cell matrix metalloproteinase production is stimulated via αvβ3 integrin. Arterioscler Thromb Vasc Biol 20:1467–1472

    CAS  PubMed  Google Scholar 

  • Booms P, Tiecke F, Rosenberg T, Hagemeier C, Robinson PN (2000) Differential effect of FBN1 mutations on in vitro proteolysis of recombinant fibrillin-1 fragments. Hum Genet 107:216–224

    Article  CAS  PubMed  Google Scholar 

  • Borkakoti N (1998) Matrix metalloproteases: variations on a theme. Prog Biophys Mol Biol 70:73–94

    Article  CAS  PubMed  Google Scholar 

  • Brassart B, Fuchs P, Huet E, Alix AJP, Wallach J, Tamburro AM, Delacoux F, Haye B, Emonard H, Hornebeck W, Debelle L (2001) Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J Biol Chem 276:5222–5227

    Article  CAS  PubMed  Google Scholar 

  • Dans MJ, Giancotti FG (1999) Signaling via integrins. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins, 2nd edn. Oxford University Press, Oxford, pp 134–139

    Google Scholar 

  • D’Arrigo C, Burl S, Withers AP, Dobson H, Black C, Boxer M (1998) TGF-beta1 binding protein-like modules of fibrillin-1 and −2 mediate integrin-dependent cell adhesion. Connect Tissue Res 37:29–51

    CAS  PubMed  Google Scholar 

  • Dietz HC, McIntosh I, Sakai LY, Corson GM, Chalberg SC, Pyeritz RE, Francomano CA (1993) Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics 17:468–475

    Article  CAS  PubMed  Google Scholar 

  • Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA (1996) Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 85:597–605

    Article  CAS  PubMed  Google Scholar 

  • Fini ME, Cook JR, Mohan R, Brinckerhoff CE (1998) Regulation of matrix metalloproteinase gene expression. In: Parks WC, Mecham R (eds) Matrix metalloproteinases. Academic Press, San Diego, pp 299–356

    Google Scholar 

  • Fleischer KJ, Nousari HC, Anhalt GJ, Stone CD, Laschinger JC (1997) Immunohistochemical abnormalities of fibrillin in cardiovascular tissues in Marfan’s syndrome. Ann Thorac Surg 63:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Forsyth CB, Pulai J, Loeser RF (2002) Fibronectin fragments and blocking antibodies to alpha2beta1 and alpha5beta1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum 46:2368–2376

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto N, Mouri N, Iwata K, Ohuchi E, Okada Y, Hayakawa T (1993) A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies. Clin Chim Acta 221:91–103

    Article  CAS  PubMed  Google Scholar 

  • Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  CAS  PubMed  Google Scholar 

  • Hemler ME (1999) Integrins. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hering TM (1999) Regulation of chondrocyte gene expression. Front Biosci 4:D743–D761

    CAS  PubMed  Google Scholar 

  • Homandberg GA (1999) Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front Biosci 4:D713–D730

    CAS  PubMed  Google Scholar 

  • Homandberg GA, Hui F, Wen C, Purple C, Bewsey K, Koepp H, Huch K, Harris A (1997) Fibronectin-fragment-induced cartilage chondrolysis is associated with release of catabolic cytokines. Biochem J 321):751–757

    CAS  PubMed  Google Scholar 

  • Hu B, Kapila YL, Buddhikot M, Shiga M, Kapila S (2000) Coordinate induction of collagenase-1, stromelysin-1 and urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1. Matrix Biol 19:657–669

    Article  CAS  PubMed  Google Scholar 

  • Jensen SA, Reinhardt DP, Gibson MA, Weiss AS (2001) Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. J Biol Chem 276:39661–39666

    Article  CAS  PubMed  Google Scholar 

  • Khan KM, Falcone DJ (2000) Selective activation of MAPK(erk1/2) by laminin-1 peptide alpha1: Ser(2091)–Arg(2108) regulates macrophage degradative phenotype. J Biol Chem 275:4492–4498

    Article  CAS  PubMed  Google Scholar 

  • Loeser RF, Forsyth CB, Samarel AM, Im HJ (2003) Fibronectin-fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem 278:24577–24585

    Article  CAS  PubMed  Google Scholar 

  • McGettrick AJ, Knott V, Willis A, Handford PA (2000) Molecular effects of calcium binding mutations in Marfan syndrome depend on domain context. Hum Mol Genet 9:1987–1994

    Article  CAS  PubMed  Google Scholar 

  • Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494

    Article  CAS  PubMed  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  CAS  PubMed  Google Scholar 

  • Obata K, Iwata K, Okada Y, Kohrin Y, Ohuchi E, Yoshida S, Shinmei M, Hayakawa T (1992) A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies. Clin Chim Acta 211:59–72

    Article  CAS  PubMed  Google Scholar 

  • Parks WC, Sudbeck BD, Doyle GR, Saariahlo-Kere UK (1998) Matrix metalloproteases in tissue repair. In: Parks WC, Mecham R (eds) Matrix metalloproteases. Academic Press, San Diego, pp 263–297

    Google Scholar 

  • Pereira L, D’Alessio M, Ramirez F, Lynch JR, Sykes B, Pangilinan T, Bonadio J (1993) Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet 2:1762

    CAS  PubMed  Google Scholar 

  • Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    CAS  PubMed  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  CAS  PubMed  Google Scholar 

  • Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384:247–250

    Article  CAS  PubMed  Google Scholar 

  • Pyeritz RE (2000) The Marfan syndrome. Annu Rev Med 51:481–510

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Keene DR, Corson GM, Poschl E, Bachinger HP, Gambee JE, Sakai LY (1996) Fibrillin-1: organization in microfibrils and structural properties. J Mol Biol 258:104–116

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Ono RN, Sakai LY (1997) Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem 272:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt DP, Ono RN, Notbohm H, Muller PK, Bachinger HP, Sakai LY (2000) Mutations in calcium-binding epidermal growth factor modules render fibrillin-1 susceptible to proteolysis. A potential disease-causing mechanism in Marfan syndrome. J Biol Chem 275:12339–12345

    Article  CAS  PubMed  Google Scholar 

  • Robinson PN, Godfrey M (2000) The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 37:9–25

    Article  CAS  PubMed  Google Scholar 

  • Sachdev NH, Di Girolamo N, McCluskey PJ, Jennings AV, McGuinness R, Wakefield D, Coroneo MT (2002) Lens dislocation in Marfan syndrome: potential role of matrix metalloproteinases in fibrillin degradation. Arch Ophthalmol 120:833–835

    PubMed  Google Scholar 

  • Saito S, Yamaji N, Yasunaga K, Saito T, Matsumoto S-i, Katoh M, Kobayashi S, Masuho Y (1999) The fibronectin extra domain A activates matrix metalloproteinase gene expression by an interleukin-1-dependent mechanism. J Biol Chem 274:30756–30763

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271:4916–4922

    Article  CAS  PubMed  Google Scholar 

  • Segura AM, Luna RE, Horiba K, Stetler-Stevenson WG, McAllister HA Jr, Willerson JT, Ferrans VJ (1998) Immunohistochemistry of matrix metalloproteinases and their inhibitors in thoracic aortic aneurysms and aortic valves of patients with Marfan’s syndrome. Circulation 98 (19 Suppl): II331–II337; discussion II337–II338

    CAS  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  • Sudbeck BD, Pilcher BK, Welgus HG, Parks WC (1997) Induction and repression of collagenase-1 by keratinocytes is controlled by distinct components of different extracellular matrix compartments. J Biol Chem 272:22103–22110

    Article  CAS  PubMed  Google Scholar 

  • Vu TH, Werb Z (1998) Gelatinase B: structure, regulation, and function. In: Parks WC, Mecham R (eds) Matrix metalloproteinases. Academic Press, San Diego, pp 115–148

    Google Scholar 

  • Yasuda T, Poole AR (2002) A fibronectin fragment induces type II collagen degradation by collagenase through an interleukin-1-mediated pathway. Arthritis Rheum 46:138–148

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Fujimoto N, Iwata K, Sakai T, Okada Y, Hayakawa T (1993) A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 1 (interstitial collagenase) using monoclonal antibodies. Clin Chim Acta 219:1–14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgesellschaft (Ro-2005/3 to P.N.R. and Re-1021/3-2 and 4-2 to D.P.R.). The authors would also like to thank the Canadian Marfan Association and the Temerty Family Foundation for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booms, P., Pregla, R., Ney, A. et al. RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: A potential factor in the pathogenesis of the Marfan syndrome. Hum Genet 116, 51–61 (2005). https://doi.org/10.1007/s00439-004-1194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1194-7

Keywords

Navigation