On the Pathogenesis of Favism

ERNESTO SARTORI

From the Paediatric Clinic, University of Padua, Italy

In some Mediterranean areas—mainly the Balearic Islands, Sardinia, Sicily, Greece, Cyprus, and Israel—where the cultivation and consumption of broad beans (Vicia faba) are extensive, favism is rather common especially in children. It occurs after the inhalation of some, as yet unidentified constituent(s) of the plant and/or more often after eating the beans, especially when they are fresh. The clinical and epidemiological behaviour of favism presents several apparent inconsistencies with what is known of its pathogenesis. In fact, while some patients present with only mild complaints, such as a mild headache, uneasiness, and weakness or also nausea, vomiting, and dizziness, others are severely ill, the prominent features being sudden severe anaemia, subicterus, and haemoglobinuria (or urobilinuria).

Both these clinical states and all the possible intermediate forms may be unique or may occur more than once without any rule in the same individual. Furthermore, it is well known, though often forgotten, that there are many subjects, who tolerate Vicia faba well for their whole lives even though they have G6PD deficiency which is always associated with haemolytic anaemia induced by Vicia faba or by a series of drugs. For instance a series of 50 subjects with severe favism was tested in north Sardinia. Among the male relatives of the propositi there were 61 fathers and brothers (aged over 10) who were all severely enzyme deficient. Of these only 15 were found to have had severe favism at one time though they all ate broad beans regularly, and even though 2 of the fathers without favism had previously had severe quinine haemoglobinuria.

Mild or ‘minor’ favism has been studied rarely and almost all the published reports deal with the severe form, also called ‘haemoglobinuric’ or ‘haemolytic’ favism. I believe that favism should not be identified a priori with drug-induced haemolysis nor should it be studied only in its severe form. Therefore, I would like to present the results of observations, not previously published, made between 1955 and 1961 at the Paediatric Clinic of the University of Sassari (Sardinia) together with other cases from the literature, which will allow some of the puzzling peculiarities of favism to be clarified. However, the most important factors in the pathogenesis of favism will first be considered.

Vicia faba

There is good evidence that the degree and rate of the ripening are more important for the pathogenesis of favism than are the particular variety or some disease of the plant. Marcolongo (1951) found that favism was more frequent and severe during a sunny, dry spring, and it can be shown (Fig. 1) that latitude

![Graph: Influence of latitude and altitude on the chronological incidence of severe favism. There is a difference in latitude of 1°21' between Sassari (SS) in the north and Cagliari (CA) in the south.](image)

Received 16 March 1971.
and altitude influence the chronological occurrence of favism in proportion to the ripening of the beans. Furthermore, the oxidizing action of the juice of fresh broad beans on the reduced glutathione of sensitive erythrocytes—tested by the method of Mela and Perona (1959)—is greater when the beans are gathered after sunshine than after rain (Table I; E. Sartori and C. Mela, unpublished observations).

Table I

<table>
<thead>
<tr>
<th>Sample</th>
<th>Glutathione Loss (mg%O/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>After Sunshine</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Mean</td>
<td>18.3</td>
</tr>
<tr>
<td>t = 17.799; p < 0.001</td>
<td></td>
</tr>
</tbody>
</table>

But the differences in concentration of active substances in the plant which are connected with the ripening, and also with the withering as claimed by Marcelongo (1959), cannot account for all the inconsistencies mentioned above; nor can they explain the results of Biddau’s classic experiment. Biddau (1930) divided several broad beans in half and gave one portion to a subject who then suffered severely, he himself ate the rest without experiencing any discomfort.

The Hereditary Background

There is now good evidence that the obvious hereditary background of favism, already postulated by Montano (1894), is really composite. In 1959, this author pointed out that: ‘two different diatheses, the favic and the haemolytic, are encountered in Sardinia, frequently associated in the same individual’ (Sartori, 1959).

The Autosomal or Favic Predisposition

The uncertain hereditary behaviour of favism was studied in some detail and depth many years ago (Sartori, 1957a, 1957b, and 1958). Analysing a first group of 100 pedigrees it was stated that the strong prevalence of males among patients admitted to hospital was a result of the greater severity of favism in boys, and that the genetic predisposition exhibited was consistent with a recessive autosomal condition. But these hypotheses were neglected for several years after Sansone and Segni (1956, 1957, and 1958) recognized the strict biochemical analogy of the erythrocytes in favism and in primaquine sensitivity (Tarlov et al, 1962) in respect of reduced glutathione content and stability and G6PD deficiency.

Then in a study of the familial predisposition to favism in Greece, Stamatoyannopoulos et al (1966) concluded that ‘an autosomal gene in the heterozygous state enhances the susceptibility to favism of G6PD-deficient individuals’. But Stamatoyannopoulos and his co-workers dealt only with ‘haemoglobinuric’ favism and failed to distinguish it from the drug-induced haemoglobinuria, and a priori required G6PD deficiency for the diagnosis of favism. More recently, but with the same bias, Kattamis, Chaidas, and Chaidas (1969) found considerable differences in the susceptibility of individuals sensitive to *Vicia faba* in Rhodes.

In the present paper the autosomal nature of the favic predisposition, without which neither mild nor severe favism occurs, can be confirmed by the following results.

(1) In a random sample of the inhabitants of two villages in north Sardinia (Bessude and Seneghe), the frequency of favism, regardless of severity, was found to be the same in both sexes (Table II).

Table II

<table>
<thead>
<tr>
<th>Sex Distribution of Favism Regardless of Severity Among Randomly-Selected Inhabitants of Two North Sardinian Villages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| x² = 0.466; p > 0.40 |

* Numbers expected if favism is assumed not to be sex-linked.

(2) This was also true in another north Sardinian village (Lodè) where Siniscalco and his team (Bernini et al, 1960) had previously investigated G6PD deficiency. Dr G. P. Perona (unpublished
fluenced by (Fig. 2). The disease is suggested as they had although of isolation for negative tolerate the itself; however, deficiency G6PD easier to G6PD-normal particularly this mild favism that therefore normal; village, favism beans were were not expected that the show of components ing reduction (3) In Lunamatrona, a small south Sardinian village, where clinical favism is very frequent, among 19 males who had had favism we found no less than 8 in whom repeated Motulsky tests were normal; therefore they were not G6PD deficient although they had favism.

Thus, favism itself is not sex-linked and may occur without haemolysis.

On the other hand Panizon and Vullo (1961) stated that the same G6PD-deficient 51Cr-labelled erythrocytes were rapidly destroyed after eating fresh beans only when given to subjects who had suffered from severe favism and not when given to subjects whose personal and familial history were negative for favism. It may be also the case that some G6PD-normal subjects who have had only mild favism will react like the former group and, conversely, that some enzyme-deficient subjects who tolerate the beans well will react like the latter. Unfortunately, there has been no opportunity to test this hypothesis nor to utilize this procedure to detect an autosomal favic predisposition among G6PD normal subjects. This would obviously be easier to test should this result in some way in the isolation of some substance related to a 'dosable' metabolite of the active substance, eg, dopaquinone as suggested by Beutler (1970).

This substance, as yet unidentified, may be influenced by age because the age incidence of the disease is exactly the same in both sexes, while G6PD deficiency is 4 times more frequent in males (Fig. 2). Its absorption may decrease or its degrada-

Table III

SEX DISTRIBUTION OF MILD AND SEVERE FAVISM IN RANDOMLY-SELECTED INHABITANTS OF LODE

<table>
<thead>
<tr>
<th></th>
<th>Absent</th>
<th>Present</th>
<th>Mild</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>235</td>
<td>237-5</td>
<td>35</td>
<td>32-4</td>
</tr>
<tr>
<td>Females</td>
<td>182</td>
<td>179-5</td>
<td>22</td>
<td>24-5</td>
</tr>
<tr>
<td>Total (n=474)</td>
<td>417</td>
<td>57</td>
<td>49</td>
<td>8</td>
</tr>
</tbody>
</table>

x² = 0.508; p > 0.40

x² = 0.889; p < 0.025

* Numbers expected if favism is assumed not to be sex-linked.

![Fig. 2. Age dependence of severe favism among children admitted to hospitals in Sardinia and in Greece. There is no difference between the sexes.](http://jmg.bmj.com/)

The X-linked or Haemolytic Predisposition.

G6PD deficiencies are X-linked. The deficient enzyme involved in favism is a variant called 'Mediterranean', whereas that involved in the previously discovered primaquine sensitivity of the American negroes is a variant now called 'A*'. Erythrocyte enzyme activity is always about 1/10 of normal in the 'A*' variant and below 1/100 in the 'Mediterranean' type in hemi- and homozygotes. Thus the enzyme deficiency involved in favism is more severe.

While, as has just been seen, favism can also occur in the absence of any G6PD deficiency, severe favism is never encountered without a strong deficiency. In my experience, there was one partial exception: a boy with acute haemoglobinuria who
for some months afterwards had a decolorization time of less than 4 hours (Motulsky's method). The American negroes, whose enzyme deficiency is milder, are not known to suffer from favism. Some of them failed to experience favism when fed suitable amounts of fresh beans from a batch proven to have induced severe favism in Sardinia; the beans had been sent by air mail within 48 hours to Dr G. L. Brewer in Chicago (unpublished observations).

While G6PD$^{\text{Med}}$ deficiency—like the A$^-$ form—is much milder in almost all females, those who have suffered from severe favism have a very low enzyme activity; the result of the Motulsky test was delayed over 4 hours in all cases. Thus, there is a high correlation between the severity of G6PD deficiency and the severity of favism in both sexes. As severe G6PD deficiency is much more frequent in males it follows that many more males are hospitalized. The erroneous opinion which identifies G6PD deficiency with a predisposition to favism arises from this indirect connexion between the enzyme deficiency and the number of patients admitted to hospital. In reality, strong G6PD deficiency only causes the haemolytic course of the disease among individuals bearing the autosomal favic predisposition or its phenocopy. Thus severe favism is always less frequent than mild favism.

Marcolongo (1951) found 33 severe cases among 132 in the area around Ogliastra (south Sardinia) and in Lodë we found 8 out of 57. Severe favism is self limited (Balsamo, 1956) as is drug-induced haemolytic anaemia, whereas patients with mild favism may relapse every day. Thus G6PD$^{\text{Med}}$ deficiency really predisposes only to a drug sensitivity more severe than primaquine sensitivity correlated with G6PD$^{A^-}$ deficiency.

To test this statement the frequency of the favic phenotype was calculated from the totals of Table III and that of the haemolytic phenotype was equalized with the phenotypic frequency of G6PD-deficient males found by Bernini et al (1960) (Table IV). The product of these two frequencies, obtained independently in Lodë, permits the number of males in this village who are expected to have favism with the more severe haemolytic course to be calculated. The number of cases of severe favism corresponds closely to the expected numbers (Table IV). Conversely the frequency of G6PD deficiency is not as strictly connected with the frequency of favism. For instance, a difference ranging between 0·198 and 0·290 for G6PD deficiency corresponds to a difference ranging between as little as 0·107 and 0·290 for favism in Seneghe and Lodë respectively.

Mithridatization

There are some factors which may account for the irregular occurrence of favism. One, probably the least important, is the variable toxicity of the beans.

Another may be the variable exposure to broad beans, which are generally avoided after acute episodes but for different lengths of time and with varying stringency. This abstinence is the major source of bias when the segregation of clinical favism is studied in families where one or both parents have suffered from the disease; as a rule they are careful to keep the beans out of the reach of their children.

A third important factor may be that by coming into frequent contact with the growing and ripening plant, individuals become proof against its poison by being submitted to gradually increasing doses (mithridatization). Since self limitation and dose dependency are proved also for the haemolysis observed in G6PD$^{\text{Med}}$-deficient subjects (Panizon and Zacchello, 1965), the lack of responsiveness, which is well known to occur for a few months after a severe haemolytic episode may occur more often after repeated mild episodes which escape detection but destroy the more sensitive older erythrocytes in small 'instalments' without any appreciable discomfort.

There is good evidence, both indirect (Perona, 1966) and direct (Panizon et al, 1970), for this gradual modification of the blood. This is obviously less likely to occur when the plant ripens faster as during a sunny, dry spring which—as stated above—can account for the outbreak of severe favism. It may be that the relative rarity of episodes of severe drug-induced haemolysis in Sardinian and Greece also results—at least in part—from this slow reduction of the mean age of the erythrocytes. It should be noted that several cases of haemolytic favism in its mild form in severely G6PD-deficient subjects have been observed.

TABLE IV

<table>
<thead>
<tr>
<th>Phenotypic Frequency</th>
<th>Severe Favism</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present</td>
</tr>
<tr>
<td>0·12</td>
<td>0·29</td>
</tr>
</tbody>
</table>

$x^2 = 0·216; p > 0·60$
Sex Ratio

The apparently chaotic sex ratios observed among various groups of patients from not greatly different populations has certainly been one of the greatest puzzles of favism for many years. Very recently (Sartori, 1970), I suggested a possible solution.

Assuming that severe favism depends on the aggravating influence of strong G6PD_{Med} deficiency on the autosomal favic predisposition, the simplest hypothesis which follows—that only deficient hemizygotes and homozygotes are prone to *Vicia faba-*induced haemolysis—does not fit. If this were true, the frequency of severe favism in the female should be equal to the square of the frequency found in the male. Actually, severe favism is always more frequent in the female than would be expected from the phenotypic frequency of the hemizygotes. Analysing the data reported in Table V, where the proportional values were calculated from the observed ones according to the Hardy-Weinberg law, it can be seen that not only homozygous but also heterozygous females must suffer the disease. There is a highly suggestive lack of difference between the percentage of heterozygotes estimated to be at risk, despite the very different observed enzyme-deficiency frequencies, morbidity rates, and sex ratios (notwithstanding the total independence between the data obtained in Sardinia and those which Kattamis, Kyriazakon, and Chaidas obtained in Greece in 1969).

To test the reliability of this procedure, Table VI compares the observed values for some parameters obtained independently in north Sardinia with the respective values expected from the results for Sassari (see Table V). None of the differences between the observed and expected values is significant.

TABLE VI

<table>
<thead>
<tr>
<th>Females with severe favism</th>
<th>Observed</th>
<th>Expected</th>
<th>x^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heterozygous (n = 17)</td>
<td>8</td>
<td>8.4</td>
<td>0.323</td>
<td>>0.50</td>
</tr>
<tr>
<td>Less anaemic (n = 36)</td>
<td>18</td>
<td>17.7</td>
<td>0.183</td>
<td>>0.60</td>
</tr>
<tr>
<td>Mothers of males with severe favism; not in turn affected (n = 254)</td>
<td>229</td>
<td>227.6</td>
<td>2.187</td>
<td>>0.10</td>
</tr>
</tbody>
</table>

On the other hand, the hypothesis that among patients with severe favism the number of females may exceed the square of the number of males because more deficient homozygotes suffer the disease than do deficient hemizygotes, should be rejected because, on average, the severity of haemolytic anaemia is never greater in the female; on the contrary it is less. Thus, the conclusion to be drawn is that really $1/6$ of the heterozygotes behave as the deficient hemizygotes and homozygotes in aggravating the favic predisposition. This is easily explained by the Lyon theory as was confirmed by Sartori, Panizon, and Zacchello (1968), and is also the case for enzyme deficiencies of the Mediterranean type. According to this hypothesis either the paternal or the maternal X is inactivated in the cell.

![Variations in the percentage of deficient erythrocytes within and among individuals.](http://jmg.bmj.com/)

FIG. 3. Variations in the percentage of deficient erythrocytes within and among individuals for G6PD_{Med} by pedigree studies in male relatives only.
On the Pathogenesis of Favism

Therefore the blood of heterozygous females behaves as a mosaic of normal and enzyme-deficient erythrocytes. Only heterozygotes whose mosaic contains a sufficiently high proportion of deficient enzymes, estimated to be about \(\frac{1}{2} \), will be predisposed to severe favism. Fig. 3 shows that among 22 heterozygotes the proportion of deficient enzymes is nearly as high as this in only one case.

Summary

Evidence is provided that the pathogenesis of favism is complex. Apart from the inhalation or ingestion of *Vicia faba* (especially when fresh and rapidly ripened), a *favic* predisposition is always necessary. This predisposition—as yet not fully identified—behaves as an autosomal recessive trait and seems to be age-influenced. But a second *haemolytic* predisposition, identified with strong G6PD^{Med} deficiency, is responsible for aggravating favism to the severe haemolytic syndrome, which prevails in boys and generally requires hospital admission and blood transfusion. This enzyme deficiency alone is not enough, and its aggravating action on the autosomal predisposition may be neutralized by a kind of spontaneous mithridatization. Severe favism may occur in mutant hemi- and homozygotes, and in 5 out of 100 heterozygotes who have at least \(\frac{1}{2} \) deficient erythrocytes in their blood mosaic.

References

On the pathogenesis of favism.

E Sartori

J Med Genet 1971 8: 462-467
doi: 10.1136/jmg.8.4.462

Updated information and services can be found at:
http://jmg.bmj.com/content/8/4/462.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata

An erratum has been published regarding this article. Please see next page or:
http://journals.bmj.com/cgi/reprintform/content/9/2/249.1.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
and isochromosome for the long arm of 21 were
excluded by the clinical findings, dermal patterns
(Walker index), and the size of the abnormal chro-
mosome. Trisomy 22 with a G/G translocation
was ruled out by the size of the abnormal chromo-
some. Trisomy 16 with monosomy G was excluded
because the abnormal chromosome was always
metacentric and slightly bigger than the number 16.
Trisomy 17 with 17/G translocation or monosomy G
with isochromosome for short arm of one of the
Group C or group B chromosomes remain possi-
bilities.

At present, classification of this karyotype is in-
advisable, especially in view of inconclusive
auroradiographic studies and inadequate banding
pattern of the chromosomes. Perhaps similar cases
will be reported.

Summary

We report the case of an unusual-looking infant
with multiple congenital anomalies such as co-lo-
boma of the iris, corneal opacities, congenital heart
defect, hepatosplenomegaly etc, who had an abnor-
mal karyotype which appears to be unique and
remains unclassified.

The authors wish to thank Dr Herbert A. Lubs, Jr of
the University of Colorado Medical Center, Colorado,
for his suggestions; and Donna Nerima and Carol
Crabtree for their technical assistance.

RAWATMAL B. SURANA,* TREvor M. Hunt, and
PATRICK E. CONEN

Departments of Pathology and Paediatrics and
the Research Institute, The Hospital for
Sick Children, and the Departments of
Pathology and Paediatrics, University of
Toronto, Ontario, Canada

* Present Address: Howard University College of Medicine and
Freemen's Hospital, 6th and Bryant Sts, NW Washington, DC
20001, USA.

Corrigenda

On the Pathogenesis of Favism by Ernesto Sartori,

The last sentence in the section on the X-linked and
haemolytic predisposition (p. 465, column 2) should
read:

For instance, a difference ranging between 0:198 and
0:290 for G6PD deficiency corresponds to a difference
ranging between as little as 0:107 and 0:120 for favism
in Seneghe and Lodé respectively

Four Patients with Trisomy 8 Identified by the
Fluorescence and Giemsa Banding Techniques by
Torjborn Caspersson, Jan Lindsten, Lore Zech, Karin
E. Buckton, and William H. Price, March 1972, vol. 9,
pp. 1–7.

The 10 cells counted and analysed from both the
father and the mother of case 4 contained 46 chromo-
somes and not 47 as shown in Table I (p. 1).