
PAUL GENEST, MARC BOUCHARD, and JACQUELINE POTY

From the Department of Pathology, Faculty of Medicine, Laval University, Quebec and the St Anne Hospital, Baie-St-Paul, Canada

Among autosomal abnormalities, those involving group-F (19–20) chromosomes are seldom encountered. Even in abortuses where chromosome defects, namely trisomies, are more frequent than in live births, Carr (1969) stated that group-F chromosomes anomalies are relatively rare.

The previous cytogenetic studies involving group-F autosomes concerned only patients with haematological diseases. Borges, Wald, and Hoffman (1964) while studying a large family harboring the gene for congenital nonspherocytic haemolytic anaemia of the glucose-6-phosphate dehydrogenase variety (CNSHA) noted that two boys and their maternal grandfather, all with CNSHA, showed mosaicism with the minor (10 to 15%) cell population lacking one F group chromosome. The boys’ parents and one normal brother showed no mosaicism. Kiossoglou, Mitus, and Dameshek (1965) reported a deleted group-F chromosome present in 6 of 7 cells karyotyped in a patient with acute granulocytic leukaemia. Kay, Lawler, and Millard (1966) described 4 cases of polycythaemia vera treated by radio-phosphorus in whom a small F chromosome was found in the bone marrow. Millard et al (1968) made further observations of a similar finding in three more patients with polycythaemia vera, two of them had received 32P and one busulphan only. Group-F chromosome anomalies were found also in 5 out of 6 patients with idiopathic sideroblastic anaemia (de Grouchy et al, 1966), 2 of whom had a partially deleted group-F chromosome and the 3 others a probable pericentric inversion of the same autosome. Goodman et al (1968) noted a small group-F chromosome in conjunction with a ring chromosome in a 79-year-old female patient who had myelofibrosis secondary to polycythaemia vera. Following a pretreatment cytogenetic study of a 25-year-old male with chronic myeloid leukae-

Received 22 September 1970.
* This investigation was supported by grant no. 604-9-280 from the Province of Quebec Department of Health and Social Welfare.
Partial Deletion of a Group-F (19–20) Chromosome

Autoradiography was carried out after labelling some peripheral blood cultures for the last 5 hours of the culture with 1.0 μc/ml of (6-3H) thymidine. Chromosome preparations were dipped in Ilford L-4 photographic emulsion and developed 4 to 5 days later.

Results

Most of the cells had a normal number of chromosomes with an XY complement. Few were hypodiploid but the absent chromosomes were variable, indicating a random loss. However, in all the metaphases examined, a group-F chromosome was lacking and a small acrocentric chromosome supernumerary. The extra chromosome had no satellites. Its short arm was more distinct than that of the Y chromosome and it had no secondary constriction. It was obviously a group-F autosome partially deleted (Fig. 2).

Measurements of the 3 normal group-F chromosomes revealed that one was slightly longer than the two others and that, consequently, the missing one was a No. 19 (Fig. 3).

Autoradiographic study showed that the presumed deleted F chromosome replicated early and had the same labelling characteristics as No. 19.

Discussion

In the very few instances where anomalies of group-F chromosomes were reported, the chromosomal disorders resulted seemingly from clonal evolution. Millard *et al* (1968) noted one of their cases, who had a normal karyotype following the first cytogenetic analysis, later on showed the F-deleted chromosome. Their hypothesis was that in polycythaemia vera the chromosome defect probably arises during the course of the disease. De Nava *et al* (1969) observed a Ph1, F-, 16+ cell line in a case of chronic myeloid leukaemia that produced a high frequency of polyploid cells, and they believed that the event was post-zygotic and evolved from an haploid set only, but independently of therapy. The clonal evolution hypothesis is strengthened by the fact that the cytogenetic study revealed the presence of group-F chromosome anomalies in less than 100% of the cells examined in the majority of the cases reported.

Furthermore, the influence of the chromosome defects has been considered in the aetiology of the haematological disorders. De Grouchy *et al* (1966) suggested that, in sideroblastic anaemia, the chromosome anomaly either would be directly

Fig. 1. The patient at age 20 years.
responsible for the disturbances of the intracellular iron metabolism or for a differentiation and maturation defects of the erythroblast stem line. Millard et al (1968) stated that in both sideroblastic anaemia and polycythaemia vera the increased erythroid cell turnover may be a favourable condition of stress for the appearance of an abnormality such as the F deletion.

The index case with his group-F autosome deletion is different from those reported with a similar chromosome defect. His mental and physical state is greatly altered but laboratory analyses did not reveal any haematological disturbance. Further, the F chromosome deletion was present in the totality of the cells analysed. The chromosome anomaly originated probably during gametogenesis. Although parents and sibs could not be examined because of remoteness, it is hypothesized that the patient's phenotypic alterations are related to his chromosome abnormality.

Summary

A deleted group-F chromosome was found in leucocyte cultures from a 22-year-old malformed and mentally retarded male patient. Although previously reported F chromosome defects were observed in haematological disorders only, the patient's blood cells were normal. Measurements and autoradiographic study indicated the abnormal chromosome was a No. 19 with partial deletion of its short arm. Parents and sibs could not be examined.

The authors thank Dr Carlton Auger, Director of the Department of Pathology, Laval University, for his comments and suggestions in the preparation of the manuscript.

References

Fig. 3. Partial karyotypes of the F, G, and Y chromosomes from lymphocytes of the propositus. The abnormal group F autosome, which was paired with a 19, has a deletion that presumably affects its short arm.

Partial deletion of a group-F (19-20) chromosome in a physically handicapped psychiatric male patient.

P Genest, M Bouchard and J Poty

J Med Genet 1971 8: 374-377
doi: 10.1136/jmg.8.3.374

Updated information and services can be found at:
http://jmg.bmj.com/content/8/3/374.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/