A Haptoglobin Johnson Family with Non-hypohaptoglobininaemic Hp]/Hp2

J. PINTERA, R. DVOŘÁK, J. VACL, and J. FIŠER

From the Center of Blood Transfusion and Haematology, Purkyně University, Brno, Toměšova ul., Czechoslovakia

Haptoglobin 2–1 (Johnson), a rare phenotype of the haptoglobin serum groups, was described by Giblett (1959) in its heterozygous form. On starch gel electrophoresis it differed from the common Hp 2–1 phenotype, in two ways: its two fastest bands were doubled, and there was retardation of all the bands representing polymeric haptoglobin molecules in the starch gel electrophoresis. The cause of these differences is likely to be seen in the modification of Hp2 allele, representing a triplication formed by unequal homologous crossing over in a homozygote Hp2/Hp2 during displaced synapsis. This was suggested by Smithies, Connell, and Dixon (1962) because of the presence of normal hp 1Se and slower migrating hp 2Ja polypeptide chains. Parker and Bearn (1963) regard the Hp 2–1 (Johnson) phenotype as a product of three independent alleles producing Hp units with different charges. Ramot, Kende, and Arnon (1962) described a Kurdish pedigree, in which Hp 2–1 (Johnson) and Hp 2–1 mating produced children: Hp 1–1, Hp 2–1, Hp 2–1 (Johnson), and three children with severe hypohaptoglobinemia, the latter being presumably products of genotypes Hp]/Hp2, according to the genotypes Hp1/Hp2 and Hp2/Hp2 of the two children of one of them.

As the phenotypical pattern of this genotype has not yet been observed with a sufficiently high level of haptoglobin, the starch gel electrophoretic patterns seen in two such affected members of a Moravian family may be of interest.

Present Investigation

In the course of routine forensic starch gel electrophoretic examinations, a Hp 2–1 (Johnson) child was found (IV.1 in Fig. 1) with an apparently ahaptoglobininaemic father, whose paternity could not be excluded by further examination of blood groups, including the ABO and MNS systems, and the Rh genotype in the Cc,Dd,Ee groups, and of the serum groups Gm(1), Gm(2), and Inv(1).

Horizontal starch gel electrophoresis of sera in the father's family revealed other rare phenotypes (Fig. 2). Their supposed genotypes are summed up in Fig. 1. The quantitative analysis of the apparently ahaptoglobininaemic sera I.1, II.4, III.6 according to a modified electrophoretic method of Javid and Horowitz (Wiedermann and Pintera, 1967) showed the haemoglobin binding capacity to be 40,43,43 mg./100 ml., respectively. After two- to threefold concentration by means of Sephadex G 50 a starch gel electrophoresis pattern was

Received September 30, 1968.

Fig. 1. The pedigree of the haptoglobin Johnson family phenotypes. EX = expired, NT = not tested, 2-2 = Hp 2–2, 2-1 = Hp 2–1, J-1 = Hp 2–1 (Johnson), J-2 = Hp 2–2 (Johnson), O = apparently ahaptoglobinemic.
noticed which was more definite, even without concentration, in the sera of II.7 and III.7. This pattern is described in Fig. 3 and designated Hp 2–2 (Johnson). The haemoglobin binding capacity in the sera of II.7 and III.7 was found to be 72 and 62 mg./100 ml., respectively.

In serum of III.8, designated Hp 2–2 in Fig. 1, the 4th and further polymeric bands were absent (Fig. 2), the pattern resembling thus the modification seen in the rare phenotype Hp 2–1 (mod.) described by Connell and Smithies (1959). A similar, but not such pronounced shortage of the pattern was observed in the Hp 2–1 sera of III.17 and III.19.

Discussion

The Hp 2–2 (Johnson) phenotype is similar to the patterns observed by Ramot et al. (1962) after concentration of the hypohaptoglobininaemic sera, and their conclusion that the respective genotype is Hp1/Hp2 fully agrees with the pedigree described in Fig. 1. It is clear, however, on the basis of our observations that this phenotype may be found even in routine starch gel electrophoresis of unconcentrated sera. The designation Hp 2–2 (Johnson) was used in analogy with the term Hp 2–1 (Johnson), even though the existence of an independent allele Hp1 would be better expressed by terms Hp J–2 and Hp J–1, respectively.

In the haptoglobin molecules of the Hp 2–2 (Johnson) phenotype a different activity of haptoglobin was observed, described in another communication (Pintera, 1969), which may explain the slight difference between the haemoglobin binding capacity regarded as hypohaptoglobininaemia in this communication and the haptoglobin level determined by means of a different method, and regarded as hypohaptoglobininaemia by other authors (Murray, Robinson, and Visnich, 1966).

The single reproducible observation of the phenotype III.8, the pattern of which could be tentatively described as Hp 2–2 (mod.), remains unexplained.

Summary

The phenotypical starch gel electrophoretic pattern, representing the haptoglobin genotype Hp1/Hp2, is described. Its characteristic feature is a slow migration rate of the complex of the main haptoglobin component with haemoglobin, which is localized nearer the start than the slowest component of Hp 2–2 phenotype. Recognition during

Fig. 2. Haptoglobin patterns. Horizontal starch gel electrophoresis of the sera after an addition of haemoglobin. Poulik's (1957) discontinuous system of buffers was used, and the gel stained with benzidine. The numbers refer to the pedigree in Fig. 1.

Fig. 3. Diagram of some haptoglobin phenotypes. The patterns of the Hp 2–1, Hp 2–2, and Hp 2–1 (Johnson) phenotypes are designed according to Parker and Bearn (1963).
A Haptoglobin Johnson Family with Non-hypohaptoglobinaemic Hp/IHp2

routine starch gel electrophoretic analysis was due to a rare coincidence of this phenotype with a sufficiently high serum haptoglobin concentration. As sera with this genotype usually are hypohaptoglobinaemic, they may well be mistaken for ahaphtoglobininaemic phenotypes.

We wish to thank Dr. E. R. Giblett for verification of the phenotype of IV.1.

REFERENCES
J Pintera, R Dvorák, J Vacl and J Fiser

doi: 10.1136/jmg.6.2.187

Updated information and services can be found at:
http://jmg.bmj.com/content/6/2/187.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/