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ABSTRACT
Background Pathogenicity predictors are integral 
to genomic variant interpretation but, despite their 
widespread usage, an independent validation of 
performance using a clinically relevant dataset has not 
been undertaken.
Methods We derive two validation datasets: an 
’open’ dataset containing variants extracted from 
publicly available databases, similar to those commonly 
applied in previous benchmarking exercises, and a 
’clinically representative’ dataset containing variants 
identified through research/diagnostic exome and panel 
sequencing. Using these datasets, we evaluate the 
performance of three recent meta- predictors, REVEL, 
GAVIN and ClinPred, and compare their performance 
against two commonly used in silico tools, SIFT and 
PolyPhen-2.
Results Although the newer meta- predictors 
outperform the older tools, the performance of all 
pathogenicity predictors is substantially lower in the 
clinically representative dataset. Using our clinically 
relevant dataset, REVEL performed best with an 
area under the receiver operating characteristic 
curve of 0.82. Using a concordance- based approach 
based on a consensus of multiple tools reduces the 
performance due to both discordance between tools 
and false concordance where tools make common 
misclassification. Analysis of tool feature usage 
may give an insight into the tool performance and 
misclassification.
Conclusion Our results support the adoption of 
meta- predictors over traditional in silico tools, but do 
not support a consensus- based approach as in current 
practice.

INTRODUCTION
As the scale of genomic sequencing continues to 
increase, the classification of rare genomic variants 
is the primary bottleneck in the diagnosis of rare 
monogenic disorder. Guidelines published by the 
American College of Medical Genetics (ACMG) 
in 20151 have helped to bring greater consistency 
to variant classification. These have been followed 
by gene/disorder- specific rule- sets,2 3 and country/
healthcare system–specific guidance such as the 
UK Association for Clinical Genomic Science 
(ACGS) best practice guidelines for variant inter-
pretation.4 Common to all guidelines is the recom-
mendation of the use of in silico prediction tools 
to aid in the classification of missense variants. In 
silico prediction tools are algorithms designed to 

predict the functional impact of variation, usually 
missense changes caused by single- nucleotide vari-
ants (SNVs). Though originally designed for the 
prioritisation of research variants,2 the tools are 
used routinely in clinical diagnostics during variant 
classification. The tools integrate a number of 
features in order to assess the impact of a variant 
on protein function.3 Initially, inter- species conser-
vation formed the bulk of the predictions, with 
some additional functional information, such as 
substitution matrices of physicochemical distances 
of amino acids (such as Grantham5 or PAM6), and 
data derived from a limited number of available 
X- ray crystallographic structures.7 Since the devel-
opment of the first in silico prediction tools over a 
decade ago,2 7 large- scale experiments such as the 
ENCODE project8 have generated huge amounts 
of functional data, and we now also have access to 
large- scale databases of clinical and neutral varia-
tion.9–11 These additional sources of data have led 
to an explosion of new in silico prediction algo-
rithms12–14 that purport to increase accuracy.

However, the large increase in the number of 
predictors integrated into classification algorithms 
has raised concerns about overfitting.15 16 Overfit-
ting occurs when the prediction algorithm is trained 
on superfluous data or features that are irrelevant 
to the prediction outcome.16 While it may appear 
that an increasingly large feature list leads to 
improvements in prediction, random variability 
within the training dataset may result in decreased 
accuracy when applied to a novel dataset. Overfit-
ting can be mitigated through the use of increas-
ingly large training datasets, and the usage of online 
variant databases, such as the genome aggregation 
database (gnomAD)17 and ClinVar,10 allows for 
sufficiently large training datasets. In addition, reli-
ance on additional information—such as protein 
functional data and allele frequency data such as 
from gnomAD17—may be contrary to the standard 
assumptions of variant classification methodology, 
namely that each dataset is independent and applied 
only once during classification.

The 2015 ACMG guidelines recommend the use 
of a concordance- based approach, where several 
prediction algorithms are used, and evidence is 
applied only when there is agreement between 
tools. There is no guidance on which in silico tools 
should be used, how many or on what constitutes 
a consensus, and this ambiguity allows for inconsis-
tencies in the application of this piece of evidence 
across clinical laboratories. Studies have previously 
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identified the limitations of applying a strict binary consensus- 
based approach.18 In response, multiple groups12–14 have created 
meta- predictors; tools which integrate information from a large 
number of sources into a machine- learning algorithm. These tools 
thereby adhere to the principle of the consensus- based model 
suggested by ACMG without the onerous task of determining 
tool concordance and reduce discordance when increasingly 
large numbers of tools are used. Unlike a manual consensus- 
based model, where tools are weighted equally, meta- predictors 
can apply weighting to features in order to maximise accuracy. 
The UK ACGS guidelines4 suggest it is likely that a single meta- 
predictor will replace this concordance- based approach, but a 
comprehensive analysis using a clinically representative dataset 
has not yet been done.

In order to evaluate the accuracy of in silico prediction tools, 
precompiled variant datasets such as VariBench19 have been 
designed to aid in training and benchmarking of pathogenicity 
predictors. However, the use of standardised datasets may intro-
duce inherent biases into prediction algorithms, resulting in 
overfitting and false concordance. Typically, prediction software 
is trained using machine- learning algorithms, and assessed using 
variants available from large online public databases2 3 7 8 12–14 20 

such as ExAC/gnomAD, ClinVar10 and SwissProt.21 It has been 
previously shown that prediction algorithms have variable perfor-
mance when applied to different datasets,3 20 22 23 and therefore 
the use of variant datasets derived from online public databases 
may not be representative of the performance of tools when 
applied in a clinical setting. While studies emphasise the use of 
‘neutral’ variation, the output from a modern next- generation 
sequencing pipeline is generally far from neutral and includes 
a large number of variant filtering steps in order to reduce the 
burden of manual variant assessment.24

Here, we evaluate and compare the performance of two tradi-
tional in silico pathogenicity prediction tools commonly used 
for clinical variant interpretation (SIFT2 and PolyPhen-27), and 
three meta- predictors (REVEL,12 GAVIN13 and ClinPred14) using 
a publicly available (‘open’) variant dataset and a clinically rele-
vant (‘clinical’) variant dataset (see figure 1). While a number of 
other tools are available, these metapredictors were selected as 
they were designed in the anticipation of being used in a clinical 
setting. We show that the tools’ performance is heavily affected 
by the test dataset, and that all tools may perform worse than 
expected when classifying novel missense variants. By assessing 

Figure 1 Flow diagram of selection and filtering steps used for the generation of the open (A) and clinical (B) datasets. Oval—variant source; box—
selection criteria; rounded box—dataset. Red text (right) shows the number of pathogenic variants, green text (left) shows the number of benign variants. 
MAF, minor allele frequency.
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the effect of a consensus- based approach, our results support the 
use of a single classifier when performing variant classification.

MATERIALS AND METHODS
Open dataset
Open dataset (n=8480, see figure 1A) represents the typical 
training and validation dataset used during in silico predictor 
design and benchmarking. Positive (‘pathogenic’) variants 
were downloaded from ClinVar10 on 13 November 2017 and 
subscription- based HGMD25 Professional release 2017.3; 
neutral (‘benign’) variants in OMIM26 morbid genes were down-
loaded from the gnomAD9 database (exomes only data v2.0.1). 
ClinVar criteria: Stringent criteria were used to increase the 
likelihood of selected variants being truly pathogenic. Missense 

SNVs with either ‘pathogenic’ and/or ‘likely pathogenic’ clas-
sification, multiple submitters and no conflicting submissions 
were included; variants with any assertions of ‘uncertain’, 
‘likely benign’ or ‘benign’ were excluded. HGMD Pro criteria: 
Single- nucleotide missense variants marked as disease- causing 
(‘DM’) were taken from HGMD Professional release 2017.3. 
gnomAD criteria: Missense SNVs with an overall minor allele 
frequency (MAF) between 1% and 5% were selected. These 
variants were deemed too common to be disease causing but 
are not necessarily filtered out by next- generation sequencing 
pipelines depending on the MAF thresholds used. Chromosomal 
locations with more than one variant (multiallelic sites) were 
excluded. Any variants found to be present in the ‘pathogenic’ 
and ‘neutral’ datasets were removed from both. Variants present 

Figure 2 In silico pathogenicity predictor feature usage and source. Shading indicates that a category of evidence is used by the tool. Codes within each 
box indicate that the feature is inherited from another tool. Feature lists were taken from the tools' original publications, supplementary materials and 
available online material. C, CADD; D, DANN; F, FATHMM; FC, FitCons; MP, MutPred; MT, MutationTaster; P, PolyPhen-2; S, SIFT; V, VEST. An extended version 
is shown in online supplementary figure S1.
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in the SIFT, Polyphen-2, REVEL, GAVIN and ClinPred training 
datasets were removed to reduce bias and circularity. Variants 
with missing or intermediate scores were also removed.

Clinical dataset
Clinical dataset (n=1757, see figure 1B and online supplemen-
tary table S1) more accurately reflects variants that might require 
classification in a clinical diagnostics laboratory following iden-
tification in an exome or genome sequencing pipeline. Variants 
were selected from three sources. Group 1 (‘DDD’) consists of 
pathogenic (n=687) and benign (n=533) missense variants iden-
tified from 13 462 families in the Deciphering Developmental 
Disorders (DDD) study that have been through multiple rounds 
of variant filtering and clinical evaluation.24 27 Variants were 
identified through exome sequencing and were reported to the 
patients’ referring clinicians for interpretation and confirmation 
in accredited UK diagnostic laboratories. All benign variants 
from this list were assessed as having no contribution towards 
the patient’s phenotype, and were present in either as hetero-
zygotes in monoallelic genes or homozygotes in biallelic genes 
classified according to the Developmental Disorder Genotype-
2- Phenotype database (DDG2P)28 (data accessed 17 Oct 2019). 
Group 2 (‘Diagnostic’) consisted of pathogenic (n=452) and 
benign (n=28) missense variants identified through Sanger 
sequencing, next- generation sequencing panel analysis or single 
gene testing in an accredited clinical diagnostic laboratory. Vari-
ants were manually classified according to the ACMG guide-
lines on variant interpretation1 on a 5- point scale (data accessed 
23 Apr 2019). Group 3 (‘Amish’) consisted of benign missense 
variants (n=57) identified through a Community Genomics 
research study of 220 Amish individuals. Variants were iden-
tified through singleton exome sequencing and were classified 
as benign based on population frequencies and zygosity within 
this study. Two subgroups were manually selected and annotated 
based on inheritance pattern and disease penetrance; subgroup 

(i) consisted of variants in genes that cause a dominantly inher-
ited disorder with complete penetrance in childhood, for which 
the individual was clinically unaffected; this list was curated by a 
consultant in clinical genetics; subgroup (ii) consisted of variants 
in all other OMIM morbid genes (including those with incom-
pletely penetrant dominant disorders and recessive and X- linked 
inheritance), with MAF >5% in the Amish cohort and MAF 
≤0.01% in gnomAD (data accessed 18 Oct 2019). Variants with 
missing or intermediate scores were removed.

Transcript selection and variant annotation
For the open dataset, the canonical transcript was selected for 
each variant using the Variant Effect Predictor (VEP).29 For the 
clinical dataset, the HGMD Professional RefSeq transcript was 
used, unless absent from the database, in which case the MANE 
primary transcript was selected. Variants were annotated with 
variant cDNA and protein nomenclature in reference to the 
selected transcript. PolyPhen-2 and SIFT scores were annotated 
using VEP. REVEL and ClinPred scores were annotated using 
flat files containing precomputed scores for all possible single- 
nucleotide substitutions, and in both cases, the combination of 
nucleotide position, nucleotide change and amino acid change 
was sufficiently unique to identify a single record, that is, tran-
script selection did not affect the scores. GAVIN scores were 
generated through a batch submission to the GAVIN server.

Tool benchmarking
The performance of each of the tools was determined for both 
datasets. For SIFT, PolyPhen-2, REVEL and ClinPred, the output 
of the analysis was a numerical score between 0 and 1. Initially, 
all tools were analysed according to the criteria defined in their 
original publications, with the thresholds for pathogenicity being 
≤0.05 for SIFT, ≥0.9 for PolyPhen-2 and ≥0.5 for ClinPred. For 
REVEL, where no threshold is recommended, a threshold of ≥0.5 

Table 1 Results of variant classification for individual tool, and two consensus- based combinations, for the (A) open (n=8480) and (B) clinical 
(n=1757) datasets

True positive True negative False positive False negative Sensitivity Specificity MCC LR+ LR−

(A) Open dataset

Individual SIFT 2302 3857 1878 443 0.84 0.67 0.48 2.6:1 1:4.2

PolyPhen-2 2387 4177 1558 358 0.87 0.73 0.56 3.2:1 1:5.6

REVEL 2394 5445 290 351 0.87 0.95 0.83 17.2:1 1:7.4

GAVIN 2615 5611 124 130 0.95 0.98 0.93 44.1:1 1:20.7

ClinPred 2469 5731 4 276 0.90 1.00 0.93 1289.6:1 1:9.9

Consensus SIFT+PolyPhen-2 2240 3410 2325 505 0.82 0.59 0.39 2:1 1:3.2

REVEL+ClinPred 2233 5442 293 512 0.81 0.95 0.78 15.9:1 1:5.1

(B) Clinical dataset

Individual SIFT 1031 212 406 108 0.91 0.34 0.31 1.38:1 1:3.62

PolyPhen-2 1021 211 407 118 0.90 0.34 0.29 1.36:1 1:3.3

REVEL 983 370 248 156 0.86 0.60 0.48 2.15:1 1:4.37

GAVIN 1100 157 461 39 0.97 0.25 0.33 1.29:1 1:7.42

ClinPred 1107 167 451 32 0.97 0.27 0.36 1.33:1 1:9.62

Consensus SIFT+PolyPhen-2 960 135 483 179 0.84 0.22 0.08 1.08:1 1:1.39

REVEL+ClinPred 973 142 476 166 0.85 0.23 0.11 1.11:1 1:1.58

For consensus- based results, non- concordant, where tools disagree on the classification, were considered incorrect. Matthews correlation coefficient (MCC) was calculated as 
follows:

 MCC = [(TP×TN)−(FP×FN)]√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)  

LR+ is the positive likelihood ratio; LR− is the negative likelihood ratio.
FN, false negatives (ie, pathogenic variants predicted to be benign); FP, false positives (ie, benign variants predicted to be pathogenic); TN, true negatives (ie, benign variants 
predicted to be benign); TP, true positives (ie, pathogenic variants predicted to be pathogenic).
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was used. The categorical classification of GAVIN was used directly 
(‘Benign’, ‘Pathogenic’). A supplementary analysis was done for 
those tools with a numerical output (SIFT, PolyPhen-2, REVEL 
and ClinPred) to more accurately compare their performance. A 
unique threshold was selected for each tool to calculate the speci-
ficity when sensitivity was set to 0.9. In order to include GAVIN in 
this analysis, a third analysis was performed, whereby each tool's 
specificity was measured when the threshold was adjusted to set 
the sensitivity identical to that of GAVIN.

RESULTS
Classification of variant sources
We compared the feature list of all tools benchmarked in this study 
(PolyPhen-2, SIFT, REVEL, GAVIN and ClinPred) and, in the case 
of the meta- predictors, the tools that they use as part of their algo-
rithm (MPC,30 MutPred,31 VEST,32 CADD,33 DANN,34 SNPEff,35 
FATHMM,36 FitCons37 and MutationTaster38). Features were 
split into five broad categories: Conservation, Genetic variation, 
Functional evidence (nucleotide), Functional evidence (protein) 
and Amino acid properties (see figure 2 and online supplementary 
figure S1). In general, the meta- predictors employ a wider variety 
of sources and are less heavily reliant on conservation alone. 
CADD/DANN and FitCons, and by extension GAVIN and Clin-
Pred, are the only predictors with features within the Functional 
(nucleotide) category and are therefore able to predict the pathoge-
nicity of a variant in the context of its nucleotide change, regardless 
of whether there is a resultant amino acid change.

Benchmarking predictor performance in the open and clinical 
datasets
Initially, each of the tools was benchmarked according to the 
threshold provided by the tools’ authors. This analysis involved a 
dichotomisation of scores with no intermediate range (see table 1).

The distribution of scores from SIFT, PolyPhen-2, REVEL 
and ClinPred is shown in figure 3 and receiver operating char-
acteristic (ROC) curves are shown in figure 4. Of the tools with 
numerical outputs, ClinPred has the highest discriminatory 
power for the open dataset with an area under the ROC curve 
(AUC) of 0.993, while REVEL has the highest AUC for the clin-
ical dataset of 0.818. The two meta- predictors outperformed 
SIFT and PolyPhen-2 in both datasets. In agreement with tool 
author benchmarking,12–14 the meta- predictors REVEL, Clin-
Pred and GAVIN were highly proficient at classifying the vari-
ants in the open dataset, achieving sensitivities of 0.87, 0.90 
and 0.95, and specificities of 0.95, 1.00 and 0.98, respectively. 
For variants in the clinical dataset, although the sensitivity of 
each tool remained largely constant, the specificity of all tools 
dropped considerably. For REVEL, ClinPred and GAVIN, spec-
ificity is reduced to 0.60, 0.27 and 0.25, respectively (table 1).

It was apparent that the threshold suggested by the tools’ 
authors was not well suited to both datasets, given the tools’ 
high sensitivity but low specificity in the clinical dataset. In 
order to correct for this, we performed a supplementary anal-
ysis for those predictors which gave a numerical output (SIFT, 
PolyPhen-2, REVEL and ClinPred). Here, a variable threshold 

Figure 3 Violin plot showing variant scores for SIFT, PolyPhen-2, REVEL and ClinPred using two datasets. Open dataset—blue; clinical dataset—red; 
pathogenic variants—filled; benign variants—unfilled. Plot was generated in R using the 'vioplot' function in the 'vioplot' library. For ease of comparison, 
SIFT scores have been inverted.
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was allowed for each tool to give a common sensitivity of 0.9 
(ie, pathogenic variation is called correctly 90% of the time). 
The threshold required to give a sensitivity of 0.9 in each tool 
is shown in online supplementary table S2. The specificity of 
each tool at the determined threshold is shown in online supple-
mentary figure S2. When allowed a variable threshold, the tools’ 
specificity increased significantly, with PolyPhen-2, SIFT, REVEL 
and ClinPred achieving a specificity of 0.67, 0.63, 0.93 and 0.99 
for the open dataset, and 0.34, 0.33, 0.52 and 0.51 for the clin-
ical dataset, respectively. In order to include GAVIN in this anal-
ysis, a third analysis was performed in which each tool was given 
a threshold to match the sensitivity achieved by GAVIN in each 
of the datasets. The specificity of all five tools is shown in online 
supplementary figure S3, and the sensitivity and threshold for 
each tool is shown in online supplementary table S3.

Use of individual tools versus a consensus-based approach 
between multiple tools
In accordance with current variant classification guidelines, we 
investigated the effect of performing a consensus- based analysis, 
using two commonly used tools, SIFT and PolyPhen-2, and two 

meta- predictors, REVEL and ClinPred, to determine whether 
this combined approach has improved sensitivity/specificity over 
the individual tools. Figure 5 shows the true concordance rate 
(correct classification by all tools), false concordance rate (incor-
rect classification by all tools) and discordance rate (disagreement 
between tools) for each of these tool pairings for the pathogenic 
and benign variants in both datasets. Within the clinically rele-
vant dataset, the tools are either falsely concordant or discor-
dant for ~15% of pathogenic variants but ~78% of benign 
variants. The sensitivity and specificity of this approach is shown 
in table 1. Use of a consensus- based approach may introduce 
a third ‘discordance’ category to the classification where tools 
disagree and no in silico evidence can be used, which applied to 
21% and 16% of variants when considering the concordance of 
PolyPhen-2 and SIFT, and 8% and 23% when considering the 
concordance between REVEL and ClinPred, for the open and 
clinical datasets, respectively.

An alternative ‘majority rule’ method can instead be applied. 
Here, more than three tools are used, and the result agreed by 
>50% of tools selected. This method eliminates the ‘discordance’ 
category, as dissenting tools are ignored. Two majority- based 

Figure 4 Receiver operating characteristic (ROC) curves for SIFT, PolyPhen-2, REVEL and ClinPred using two datasets. Open dataset—blue; clinical 
dataset—red. Generated in R using the ‘roc’ and ‘plot.roc’ functions in the ‘pROC’ library. Area under the ROC curve (AUC) was calculated in R using the 
‘roc’ function. For ease of comparison, SIFT scores have been inverted.
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analyses were performed using (1) all five tools (SIFT, Poly-
phen-2, REVEL, GAVIN and ClinPred) and (2) using only the 
meta- predictors (REVEL, GAVIN and ClinPred). The sensi-
tivity and specificity of this majority- based approach is shown in 
online supplementary table S4. While this approach did improve 
on the strict concordance approach outlined previously, and is 
commonly applied in clinical genomics, the false concordance 
was still high and the highest specificity in the clinical dataset, 
achieved using a majority voting based approach with all five 
tools, was 0.32 (in contrast to the specificity of 0.60 achieved by 
REVEL in the same dataset).

DISCUSSION
We have compared the performance of five in silico pathoge-
nicity predictors—two tools used routinely in variant classi-
fication (SIFT and PolyPhen-2) and three recently developed 
clinical meta- predictors (REVEL, ClinPred and GAVIN)—using 
two variant datasets: an open dataset collated using the selec-
tion strategy commonly employed when benchmarking tool 
performance, and a clinically representative dataset composed 
of rare and novel variants identified through high- throughput 

research and clinical sequencing with manual classification. 
Overall, the data herein show that meta- predictors have a 
greater sensitivity and specificity than the classic tools in both 
variant datasets. However, despite the increased accuracy of the 
meta- predictors, all tools performed substantially worse in the 
clinical dataset compared with the open dataset. This difference 
in tool performance illustrates the importance of considering 
the provenance of variants when benchmarking tools and how 
overfitting of a classifier to the training dataset can occur when 
increasingly large sets of variant features are used. The two data-
sets herein were constructed using very different methodologies, 
which determine the variants present within each. The open 
dataset, composed of variants derived from online repositories, 
is modelled on the methods commonly used when constructing 
test datasets. The tools performed universally well when char-
acterising this dataset, indicating that these variants inherently 
possess features easily identifiable to the in silico predictors. In 
contrast, the clinical dataset is composed of variants identified 
through research and clinical next- generation sequencing pipe-
lines, which had undergone multiple rounds of variant filtering 
and selection. Many variants within the open dataset would be 

Figure 5 Concordance between tools separated by dataset and classification (pathogenic and benign). Open dataset—blue; clinical dataset—red; 
pathogenic variants—top graph; benign variants—bottom graph. True concordance indicates that the tools agree and were correct. False concordance 
indicates that the tools agree but were incorrect. Discordance indicates that the tools disagreed on the classification.
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automatically filtered out of the clinical dataset, based on MAF 
for example, and this dataset therefore gives a more representa-
tive assessment of the performance of such tools in genomic diag-
nostics laboratories—an assessment not previously performed.

Our analysis suggests that REVEL performs best when clas-
sifying rare variants routinely identified in clinical sequencing 
pipelines, with an AUC for our clinical dataset of 0.818, followed 
closely by ClinPred with an AUC of 0.808 (figure 4) and with a 
higher specificity than GAVIN in a direct (although suboptimal) 
comparison (online supplementary figure S3). While the REVEL 
team does not suggest a strict threshold for categorisation, in 
our analysis for the clinical dataset, a threshold of 0.43 gave a 
sensitivity of 0.9, and a specificity of 0.52, which is comparable 
with previous studies’ threshold of 0.5.14

Current guidelines on the classification of variants indicate 
that evidence should only apply when multiple tools are concor-
dant.1 However, the use of concordance may introduce a third 
category to variants classification (discordance), where there 
is disagreement between tools and therefore the tools cannot 
be used as evidence to categorise the variant as either benign 
or pathogenic. The use of a majority- voting system appears to 
improve performance over a strict concordance approach, but 
our data show that both concordance methodologies give a 
lower sensitivity and specificity than the use of either of these 
tools in isolation, and furthermore that their performance is 
below that of the meta- predictors.

As with all similar studies, we were limited by the availability 
of novel variants absent from online databases such as gnomAD. 
The use of under- represented and genetically isolated popula-
tions, such as the Amish, allowed for the identification of several 
novel benign variants and suggests that such populations may be 
a rich source for future studies. We also identified several both 
pathogenic and benign variants in a clinical population through 
a translational research study (DDD). While steps were taken to 
ensure that the benign variants attained from this group were 
indeed benign (all variants were present within either monoal-
lelic genes or in biallelic genes in a homozygous state, and were 
annotated by the referring clinician as having no contribution 
towards the patient’s clinical phenotype), nonetheless it cannot 
be guaranteed that the variants had no impact of protein func-
tion. The study underlines the need for improved data- sharing 
between clinical laboratories, including both pathogenic and 
benign rare variants.

This study supports the adoption of in silico meta- predictors 
for use in variant classification but recommends the use of a 
single meta- predictor over a consensus- based approach, as 
recommended by current ACMG guidelines.1 Each of the tools 
uses different though heavily overlapping data sources and the 
feature list used by a tool should be carefully considered before 
the tool is used. Our results also suggest that tools that use 
gnomAD data directly may have low specificity when classi-
fying rare or novel variants and that care should be taken when 
using these tools in conjunction with the ACGS guidelines, as 
presence in or absence from the gnomAD database is already 
accounted for in other evidence criteria. Although use of a 
meta- predictor tool offers advantages over the use of previously 
available and widely adopted in silico tools, there remain issues 
to be addressed before they can be used at a level greater than 
supporting evidence for clinical variant interpretation.
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