- Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ jmedgenet-2019-106519).

For numbered affiliations see end of article.

Correspondence to

Dr Alexandre Buffet, Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France;
alexandre.buffet@inserm.fr
BC, SF, SG and ML contributed equally.

Received 22 August 2019
Revised 3 January 2020
Accepted 6 January 2020
Published Online First 29
January 2020
© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Buffet A, Calsina B, Flores S, et al. J Med Genet 2020;57:752-759.

Germline mutations in the new E1' cryptic exon of the $V H L$ gene in patients with tumours of von HippelLindau disease spectrum or with paraganglioma

Alexandre Buffet © , ${ }^{1}$ Bruna Calsina, ${ }^{2}$ Shahida Flores, ${ }^{3}$ Sophie Giraud, ${ }^{4,5}$ Marion Lenglet, ${ }^{6,7}$ Pauline Romanet, ${ }^{8}$ Elisa Deflorenne, ${ }^{1}$ Javier Aller, ${ }^{9}$ Isabelle Bourdeau, ${ }^{10}$ Brigitte Bressac-de Paillerets, ${ }^{5,11}$ María Calatayud, ${ }^{12}$ Caroline Dehais, ${ }^{13}$ Erwan De Mones Del Pujol, ${ }^{14}$ Atanaska Elenkova, ${ }^{15}$ Philippe Herman, ${ }^{16}$ Peter Kamenicky ${ }_{1}{ }_{12}$ Sophie Lejeune, ${ }^{5,18}$ Jean Louis Sadoul, ${ }^{19}$ Anne Barlier, ${ }^{5,8}$ Stephane Richard ${ }^{5,6,20}$ Judith Favier, ${ }^{1}$ Nelly Burnichon, ${ }^{1,21}$ Betty Gardie, ${ }^{6,7}$ Patricia L Dahia, ${ }^{3}$ Mercedes Robledo, ${ }^{2}$ Anne-Paule Gimenez-Roqueplo ${ }^{1,5,21}$

Abstract

Backgrounds The incidence of germline mutations in the newly discovered cryptic exon ($E 1^{\prime}$) of $V H L$ gene in patients with von Hippel-Lindau (VHL) disease and in patients with paraganglioma or pheochromocytoma (PPGL) is not currently known. Methods We studied a large international multicentre cohort of 1167 patients with a previous negative genetic testing. Germline DNA from 75 patients with a single tumour of the VHL spectrum ('Single VHL tumour' cohort), 70 patients with multiple tumours of the VHL spectrum ('Multiple VHL tumours' cohort), 76 patients with a VHL disease as described in the literature ('VHL-like' cohort) and 946 patients with a PPGL were screened for E1' genetic variants. Results Six different genetic variants in E1' were detected in 12 patients. Two were classified as pathogenic, 3 as variants of unknown significance and 1 as benign. The rs 139622356 was found in seven unrelated patients but described in only 16 patients out of the 31390 of the Genome Aggregation Database ($\mathrm{p}<0.0001$) suggesting that this variant might be either a recurrent mutation or a modifier mutation conferring a risk for the development of tumours and cancers of the VHL spectrum. Conclusions VHL E1' cryptic exon mutations contribute to 1.32% (1/76) of 'VHL-like' cohort and to 0.11% ($1 / 946$) of PPGL cohort and should be screened in patients with clinical suspicion of VHL, and added to panels for Next Generation Sequencing (NGS) diagnostic testing of hereditary PPGL. Our data highlight the importance of studying variants identified in deep intronic sequences, which would have been missed by examining only coding sequences of genes/exomes. These variants will likely be more frequently detected and studied with the upcoming implementation of wholegenome sequencing into clinical practice.

INTRODUCTION

Von Hippel-Lindau (VHL) disease is an autosomaldominant renal cancer predisposition syndrome ${ }^{1}$
responsible for the development in affected patients of renal cysts or clear cell carcinomas, and other features as retinal or central nervous system haemangioblastomas, pancreatic cysts or neuroendocrine tumours, endolymphatic sac tumours and pheochromocytomas and/or paragangliomas (PPGLs). A germline mutation (including gross deletion) is identified in one of the three exons of VHL in almost all affected patients. ${ }^{2}$ Nevertheless, some patients with clinically diagnosed VHL disease, but without identified VHL germline mutation, have been reported. ${ }^{3}$ One of the tumour types of the VHL tumour spectrum, PPGL, are rare neuroendocrine tumours with a great genetic heterogeneity and the highest heritability rate with about 40% of genetically determined forms. ${ }^{45}$ Indeed, to date, approximately 17 susceptibility genes have been reported but two thirds of identified mutations are found in $S D H B, S D H D$ and VHL genes. ${ }^{67}$

Recently, a cryptic exon of VHL gene, named E1', has been discovered. A germline mutation in the first intronic region which results in creation of a cryptic exon designated E1' was found in one large family with a typical VHL disease and without any alteration in the other VHL exons. ${ }^{8}$ VHL gene is one of the major PPGL susceptibility genes but, to date, E1' exon has not been included in PPGL target gene panels.

Hence, our objective was to assess the prevalence of E1' germline mutations in two international cohorts of patients: first, in 221 patients with a single or multiple tumours suggesting a VHL disease and then in 946 with a PPGL but without an identified mutation in the three VHL exons or in the main PPGL susceptibility genes, respectively.

METHODS

Patient's selection

A total of 1167 patients were analysed, divided into four different groups:

Table 1 cohorts	Main clinical and tumour characteristics of the different
Total patients n=1167	
VHL-like, $\mathrm{n}=76$ patients	
Age at first diagnosis mean (min-max)	$45.4(20-76)$
Multiple haemangioblastomas	$16(21 \%)$
Haemangioblastoma with another VHL tumour	$28(37 \%)$
One VHL tumour and family history of VHL tumour	$32(42 \%)$
Multiple VHL tumours, n=70 patients	
Age at first diagnosis mean, (min-max)	$55(11-81)$
Three or more VHL tumours	$3(4 \%)$
Two VHL tumours	$67(96 \%)$
Single VHL tumour, n=75 patients	
Age at first diagnosis mean (min-max)	$34.6(11-78)$
Clear cell renal cell carcinoma	$3(4 \%)$
Cerebral haemangioblastoma	$27(36 \%)$
Retinal haemangioblastoma	$10(13.3 \%)$
Other tumours	$35(46.6 \%)$
PPGL, n=946 patients	
Age at first diagnosis mean (min-max)	$43(8-94)$
Benign PPGL	$869(92 \%)$
Single benign PPGL	$771(82 \%)$
Multiple benign PPGL	$98(10 \%)$
Metastatic PPGL	$77(8 \%)$
Single metastatic PPGL	$67(7 \%)$
Multiple metastatic PPGL	$10(1 \%)$
Familial PPGL	

PPGL, paraganglioma; VHL, von Hippel-Lindau.

- 946 patients with PPGL but without germline mutation in major PPGL susceptibility genes ('PPGL' cohort) (table 1 and online supplementary table S 1).
- 76 patients with a VHL disease as defined in the literature, ${ }^{29}$ that is, patients with multiple haemangioblastomas, or a single haemangioblastoma with another tumour of the VHL spectrum, or one tumour of the VHL spectrum (excepted epididymal and renal cysts) and family history of VHL tumour but no germline VHL gene mutation ('VHLlike' cohort).
- 70 patients with multiple tumours of the clinical spectrum of VHL disease but who did not fill the definition of a VHL disease and who had no germline VHL mutation ('Multiple VHL tumours' cohort).
- 75 patients with a single tumour of the VHL spectrum without VHL mutation occurring at a young age ('Single VHL tumour' cohort) (table 1 and online supplementary table S2).
Germline DNA from 'VHL-like', 'Multiple VHL tumours' and 'Single VHL tumour' cohorts had been previously tested for VHL gene by Sanger sequencing or Next Generation Sequencing and large rearrangements by MLPA or QMPSF. The procedures used for PPGL diagnosis were in accordance with international guidelines. ${ }^{1011}$

Moreover, a control cohort of 198 European subjects without VHL manifestation was analysed in order to determine the frequency of variant in the general population.

Each patient signed a written informed consent for genetic analyses.

Direct sequencing of the E1' cryptic exon of VHL on germline DNA

Sanger sequencing on germline DNA of E1' was performed as previously described. ${ }^{8}$ Variants interpretation was performed by using different criterions: ACMG criteria, ${ }^{12}$ allele frequency in databases, phenotype of patients and tumour analysis as described below.

VHL gene analysis in tumour

Tumour DNA was extracted from frozen or paraffin embedded tumour by the QIAamp DNA minikit (Qiagen). Loss of heterozygosity (LOH) was evaluated by (1) Sanger sequencing of the E1' cryptic exon of VHL by mutation-specific primers and (2) microsatellite analysis on D3S1537, D3S1038, D3S1317 D3S3547, D3S3727 as previously described. ${ }^{1314}$ VHL gene deletion on tumour DNA was assessed with the SALSA MLPA P016 VHL probemix (MRC-Holland).

CA9 immunochemistry

Immunohistochemistry was performed as previously described on $6 \mu \mathrm{~m}$ slides cut from paraffin-embedded tumours with anti CA9 antibody ($1 / 1500$, ab15086, Abcam). ${ }^{15}$ Antigen retrieval was performed by boiling slides in Tris-EDTA buffer (pH9) for 45 min . Revelation was performed using Histogreen as a chromogen. Images were acquired with a Leica DM400B microscope with Leica Application Suite software V.2.8.1 and a Leica DFC420C camera.

PNMT and VHL RT-qPCR

RNA was extracted from paraffin embedded tumours of six control PPGL (3 NF1-related, 2 RET-related and 1 TMEM127related PPGL), 5 VHL - related PPGL (all carrying a missense mutation in VHL gene) and patients \#3 and \#10 PPGL by using the Maxwell 16 LEV RNA FFPE Purification Kit (Promega). RNA was quantified and its purity assessed with a NanoDrop ND-1000 spectrophotometer (Labtech). RT PCR was performed on 1000 ng of RNA with iScript cDNA Synthesis Kit iScript (BioRad). Then, as described in, ${ }^{16}$ pre amplification of PNMT, VHL, GAPDH and $18 S$ on complementary DNA was performed with SsoAdvanced PreAmp Supermix (BioRad). Because of RNA fragmentation, all primers were designed to amplify amplicons smaller than 100 bp . We used two VHL primer sets. The first set amplified the VHL transcript including exons 1 and 2 (E1-E2) (F: 5'- CATCCACAGCTACCGAGGTC-3' overlapping exons 1 and 2 and R: 5'-GTGTGTCCCTGCATCTCTGA-3' located on exon 2). The second set amplified the VHL transcript with exon 1 and the cryptic exon (E1-E1') (F: 5'-GCATCCACAGC-TACCGAGTC-3' overlapping exon 1 and the cryptic exon and R: 5'-AGTCTCCCCAGGAGGAATGT-3' located on the cryptic exon). Quantitative PCR was performed on VHL (E1-E2), PNMT, GAPDH and $18 S$ by SYBR Green Master MixSybrGreen (BioRad) on the C1000 Touch (BioRad) and VHL (E1-E1') was amplified by PCR in parallel with GAPDH. All experiments were performed in duplicate three times.

Statistical analysis

Statistical analysis was carried out with GraphPad software. Differences between allele's frequency in gnomAD and our cohort of patients and relative risk were assessed by χ^{2} tests. A $\mathrm{p}<0.05$ was considered significant.

RESULTS

We analysed the germline DNA of 1167 patients from France, Spain, Canada and the USA. We identified a rare germline
Table 2 Patients with a genetic variant in the E1' cryptic exon of VHL gene

Figure 1 VHL E1' variants identified: mutations identified in patient \#10 on the germline DNA and somatic DNA (A); location of germline variants found in VHL E1'(B).
genetic variant (minor allele frequency $<1 \%$) in the E1' VHL cryptic exon in 12 patients (1%). One of these patients was classified as 'VHL-like' (1 of 76 patients, 1.3%), 2 as 'Multiple VHL tumours' (2/70 patients, 2.9%), 1 as 'Single VHL tumour' (1/75 patients, 1.3%) and 8 belonged to the 'PPGL' cohort (8/946, 0.8%) (table 2). Among these 12 patients, we identified 6 different variants, 4 in the E1' and 2 at the intron-exon junction and we considered only two variants as pathogenic mutations (figure 1). None of these variants was found in a control cohort of 198 European subjects without VHL manifestations.

Seven patients (patients \#2 to \#8) (0.6%) carried the same rare variant of uncertain significance (VUS), c. $340+578 \mathrm{C}>\mathrm{T}$ which is referenced in dbSNP as rs139622356 and has been previously reported in the Genome Aggregation Database (gnomAD). The five remaining patients carried different E1' variants. One of them (patient \#9) harbours the c. $340+617 \mathrm{C}>\mathrm{G}$ mutation previously described in the original paper. ${ }^{8}$ Patient \#12 carried the $\mathrm{c} .340+866 \mathrm{C}>$ A VUS, which is referenced in dbSNP (rs536631685) and 1000 Genomes, but not in the Genome Aggregation Database (gnomAD). Finally, three novel VUS of the E1' VHL cryptic exon were discovered in the three remaining patients. None of the four patients with a PPGL and an E1' VUS have developed VHL spectrum tumour(s) during their follow-up and none of them had family history of VHL disease (table 2); however, segregation analysis was only performed in patient \#9. The proband's mother did carry the variant and had a pancreatic cyst and multiple vertebral body haemangiomas which both are evocating of VHL disease. ${ }^{17}$

Among the remaining 11 patients, 3 tumours were available, 2 as paraffin embedded samples (patients \#1, \#10) and 1 as a frozen tumour (patient \#3). None of them presented a LOH at VHL locus and the mutated allele was lost as determined by

Sanger sequencing in tumour \#1. In tumour DNA of patient \#10, which harbours the $c .340+682 \mathrm{~T}>\mathrm{C}$ variant, we identified a second variant in the exon 3 of $V H L$ (c. $482 \mathrm{G}>\mathrm{A}$; p.Arg161Gln), known to be pathogenic (figure 1). This somatic mutation was previously described in this patient. ${ }^{18}$ In the absence of LOH , this exon 3 variant may function as the second VHL hit in this tumour. No other mutation of the VHL gene was identified in tumour DNA of patient \#3.

To validate and classify these different VUS, we carried out different functional studies on available tumour tissues. We first performed immunohistochemistry to study the expression of CA9, known to be expressed at the membrane of tumour cells in case of VHL inactivation. ${ }^{19}$ A membranous positive CA9 immunostaining has been previously reported in VHL-related PPGL, haemangioblastoma, endolymphatic tumours and ccRCC. ${ }^{15} 2021$ We observed a cluster of tumour cells with a positive membranous CA9 immunostaining only in the PPGL of patient \#10 (figure 2A) which can be seen in VHL-related PPGL. ${ }^{15}$ Then, we assessed the expression of PNMT gene, which is one of the most downregulated genes in VHL-related PPGL, ${ }^{22}{ }^{23}$ by RT-qPCR. As expected, the PPGL of patient \#10 exhibited a significant low expression of PNMT mRNA, comparable to the VHL-tumours used as controls. On the contrary, the level of PNMT expression was equivalent to control tumours in the PPGL of patient \#3, which produced both epinephrine and norepinephrine. Finally, we analysed the expression of VHL gene by RT-qPCR. We assessed the expression of two different VHL mRNA: the mRNA containing the exons 1 and 2 (E1-E2), which will lead with the exon 3 to the expression of the two main VHL proteins (pVHL213 and pVHL160) and VHL mRNA containing the exon 1 and E1' (E1-E1'), which was previously described as increased in tumour or in lymphoblastoid cell lines

of patients with E1' mutation. In normal condition, this VHL E1-E1' mRNA is degraded by nonsense-mediated decay (NMD), and in this pathological condition, NMD may be overwhelmed. The PPGL of patients \#3 and \#10 showed expression of VHL E1-E1' mRNA which was absent in controls, suggesting that the two variants change the VHL mRNA splicing (figure 3). Moreover, the PPGL of patient \#10 showed a low expression of VHL E1-E2 mRNA comparable to the VHL-related PPGL used as control (figure 2B). Altogether, these data provide evidence that this VHL E1' mutation (c. $340+682 \mathrm{~T}>\mathrm{C}$) is a pathogenic mutation that combined with the second mutation (c. $482 \mathrm{G}>\mathrm{A}$; p. $\operatorname{Arg} 161 \mathrm{Gln}$) induce tumorigenesis.

Finally, 23 patients carry the c. $340+648 \mathrm{~T}>\mathrm{C}($ rs73024533) variant, previously described in dbSNP, at an heterozygous state. The allele frequency of rs73024533 in our cohort is comparable to that of the gnomAD database and of our control cohort of 198 European subjects (1.9% vs 1.3% and 1.3%, respectively, $\mathrm{p}=0.0536$).

DISCUSSION

E1' mutations were previously described by Lenglet et al in eight families, either with erythrocytosis or VHL disease. These mutations led to an abnormal VHL mRNA with the insertion of the

Figure 3 Expression of E1-E1' transcript of VHL gene showed expression only in patients \#3 and \#10.

E1' in the transcript and to mRNA degradation by NMD and to global defect in VHL protein expression. ${ }^{8}$
In our large international study, we identified four new germline variants in E1' VHL gene and we classified two of them as pathogenic, representing 1.3% of 'VHL-like' cohort (1/76 patients) and 0.11% of 'PPGL' cohort (1/946 patients). Our patients did not have all the manifestation of VHL disease. However, in the single patient in whom a familial genetic screening was performed (patient \#9), the proband's mother had her first screening (cerebral and medullary MRI and abdominal CT scan) at the age of 70 years old, which diagnosed one pancreatic cyst and multiple vertebral body haemangiomas. Interestingly, multiple vertebral body haemangiomas are rare in VHL disease but have been described in patients with Chuvash polycythemia, a disease secondary to a recurrent germline biallelic mutation in VHL gene (c.598C>T, p.Arg200Trp). ${ }^{24}$ Our data suggest incomplete penetrance of E1' VHL mutations, as it was previously described for the SDHA gene-another PPGL susceptibility gene- mutations that exhibit a relatively high allele frequency in gnomAD. ${ }^{25}$

We have identified the same variant c.340+578C $>$ T (rs139622356) in seven patients, but our tumour analyses were not able lead to the classification of this variant in a pathogenic variant. Indeed in one tumour with this variant, we identified the E1-E1' mRNA which suggest that the variant is pathogenic. However, epinephrine secretion and PNMT expression of this tumour are strong indicator against the diagnosis of VHL -related PPGL. ${ }^{26}$ Moreover, we identified this variant in 0.6% of our
cohort, which is 10 times more frequent in our cohort than in reference databases. Indeed, this variant is described in 0.05% of gnomAD subjects ($7 / 1167$ vs $16 / 31390, \mathrm{p}<0.0001$). It is noteworthy that in Tuscan and Iberian subjects reported in the 1000 Genomes project, the frequency of this rs139622356 is 0.9%. All these data suggest that this variant could be either a pathogenic variant that is not implicated in the PPGL of our patient because of the lack of $\mathrm{LOH} /$ second VHL mutation, or a modifier variant contributing potentially to an 8.5 -fold risk (95% CI 4.4 to $14.3, \mathrm{p}<0.0001$) for development of PPGL or VHL tumours. Hence, more functional analyses and more tumours analyses will be required to achieve a definitive conclusion.

Our study demonstrates that E1' VHL variants are rare events in 'VHL-like' and 'PPGL' patients, but nearly as frequent as the VHL mutation rate in exons 1 and 2 in patients with PPGL (in the molecular genetic laboratory of Hôpital Européen Georges Pompidou-Paris-France VHL mutation rate in exon 1 has been reported to be $0.74 \%(p=0.062)$, in exon 2: $0.18 \%(p=0.99)$ and in exon 3: $0.92 \%(\mathrm{p}=0.0264),{ }^{27}$ or as frequent as in exons of other PPGL susceptibility genes (for instance, the mutation rate in exon 1 of SDHD is $0.43 \%)$. However, because patients with well-established VHL pathogenic mutations were excluded from our cohort, the current frequency may be an underestimation. As the identification of VHL variants has important implications for management and follow-up of patients and relatives, we suggest that E1' cryptic exon should be added to NGS diagnostic panels. Considering the genetic heterogeneity of PPGLs and the high rate of detectable driver mutations in these tumours, ${ }^{10}$ a low frequency of variants in any given new gene/ exons is not unexpected. However, the interpretation of these E1' variants might be difficult and more functional analyses has to be designed in order to validate these variants. Finally, our study underlines the importance of variants identified in deep intronic sequences, which would have been missed by examining only coding sequences of genes/exomes. These variants will likely be more frequently detected and studied in the next future with the upcoming implementation of whole-genome sequencing into clinical practice.

Author affiliations

${ }^{1}$ UUniversité de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer F-75015, Paris, France
${ }^{2}$ Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
${ }^{3}$ Division of Hematology and Medical Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
${ }^{4}$ Genetics Department, Hospices Civils de LYON (HCL), University Hospital, East Biology and Pathology Center, B-A3, 59 Bld Pinel, 69677, Bron, France
${ }^{5}$ Réseau National pour Cancers Rares PREDIR labellisé par I'Institut National contre le Cancer, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
${ }^{6}$ École Pratique des Hautes Études, PSL Research University, Paris, France
'L'Institut du Thorax, INSERM, Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Nantes, France
${ }^{8}$ Aix Marseille Univ, APHM, INSERM, MMG, Laboratory of Molecular Biology Hospital La Conception, Marseille, France
${ }^{9}$ Endocrinology and Nutrition Service. Hospital Universitario Puerta de Hierro, 28222, Majadahonda, Spain
${ }^{10}$ Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, Quebec, Canada
${ }^{11}$ Gustave Roussy, Université Paris-Saclay, Département de Biopathologie and INSERM U1186, Villejuif, F-94805, France
${ }^{12}$ Department of Endocrinology and Nutrition, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
${ }^{13}$ Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires La Pitié SalpêtrièreCharles Foix, Service de Neurologie 2-Mazarin, Paris, France
${ }^{14}$ Service ORL, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
${ }^{15}$ Department of Endocrinology, USHATE "Acad. Ivan Penchev", Medical University Sofia, Sofia, Bulgaria
${ }^{16}$ Assistance Publique, Hôpitaux de Paris, Service ORL-CCF, hôpital Lariboisière, université Paris VII, Paris, France
${ }^{17}$ Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de I'Hypophyse, Le Kremlin Bicetre, France
${ }^{18}$ Department of Clinical Genetics, Centre Hospitalier Régional et Universitaire de Lille, Lille, France
${ }^{19}$ Service d'Endocrinologie, Hôpital de L'Archet, CHU de Nice, Nice, France
${ }^{20}$ Génétique Oncologique EPHE, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France
${ }^{21}$ Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France

Acknowledgements We thank Catherine Tritscher for administrative assistance and Caroline Travers, Valentin Adamus and Astrid Ramahefasolo for technical assistance. We also thank Pr Pascal Pigny for his help and the PREDIR and TENGEN networks for their help in patient enrolment. The authors would like to express their gratitude to Sophie Devaux for her help.
Contributors APGR conceived and supervised the study. ABu, APGR, MR, PLD and $B G$ designed the study and analysed the results. JF and NB participated to the data analysis. $A B$ u., $B C, S F, S G, M L$ and $E D$ designed and performed the experiments. PR, JA, IB, BBdP, MC, CD EdM, AE, PH, PK, SL, JLS, ABa, SR, BG, PLD, MR and APGR collected subjects and clinical parameters. ABu and APGR wrote the manuscript. ABu prepared the figures and the tables. All the authors discussed the results and commented the manuscript.
Funding ABu received a financial support from ITMO Cancer AVIESAN (Alliance Nationale pour les Sciences de la Vie et de la Santé, National Alliance for Life Sciences \& Health) within the framework of the Cancer Plan and from la Fondation pour la Recherche Médicale (FDT20170436955). SF is currently supported by an NIH-NIGMS individual predoctoral fellowship grant (F31-GM131634-01) and, previously, by an NIH NRSA Institutional Predoctoral Training Grant T32CA148724 and NRSA F31-GM131634-01. PLD receives funding support from NIH-GM114102, Alex's Lemonade Stand Cancer Foundation (Innovation Award) and the NCATS- UL1 TR002645. The Genomic Sequencing Facility at the GCCRI is supported by the P30CA54174 (CTRC at UTHSCSA) and NIH Shared Instrument grant 1S100D021805-01 (S10 grant). BC is supported by Rafael del Pino Foundation. MR receives funding support from Instituto de Salud Carlos III (ISCIII), through the 'Acción Estratégica en Salud' (AES) (projects PI17/01796), cofounded by the European Regional Development Fund (ERDF), and the Paradifference Foundation.
Disclaimer The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Competing interests None declared.
Patient consent for publication Not required.
Provenance and peer review Not commissioned; externally peer reviewed.
Data availability statement All available data are in the article.
Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Alexandre Buffet http://orcid.org/0000-0002-4742-2708

REFERENCES

1 Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993;260:1317-20.
2 Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH, disease vonH-L. Von Hippel-Lindau disease. Lancet 2003;361:2059-67.
3 Binderup MLM, Galanakis M, Budtz-Jørgensen E, Kosteljanetz M, Luise Bisgaard M, Prevalence LBM. Prevalence, birth incidence, and penetrance of von Hippel-Lindau disease (vHL) in Denmark. Eur J Hum Genet 2017;25:301-7.
4 Favier J, Amar L, Gimenez-Roqueplo A-P. Paraganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 2015;11:101-11.
5 Gimenez-Roqueplo A-P, Dahia PL, Robledo M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012;44:328-33.

6 Amar L, Bertherat J, Baudin E, Aizenberg C, Bressac-de Paillerets B, Chabre 0, Chamontin B, Delemer B, Giraud S, Murat A, Niccoli-Sire P, Richard S, Rohmer V, Sadoul J-L, Strompf L, Schlumberger M, Bertagna X, Plouin P-F, Jeunemaitre X, Gimenez-Roqueplo A-P. Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 2005;23:8812-8.
7 Currás-Freixes M, Piñeiro-Yañez E, Montero-Conde C, Apellániz-Ruiz M, Calsina B, Mancikova V, Remacha L, Richter S, Ercolino T, Rogowski-Lehmann N, Deutschbein T, Calatayud M, Guadalix S, Álvarez-Escolá C, Lamas C, Aller J, Sastre-Marcos J, Lázaro C, Galofré JC, Patiño-García A, Meoro-Avilés A, Balmaña-Gelpi J, De Miguel-Novoa P, Balbín M, Matías-Guiu X, Letón R, Inglada-Pérez L, Torres-Pérez R, Roldán-Romero JM, Rodríguez-Antona C, Fliedner SMJ, Opocher G, Pacak K, Korpershoek E, de Krijger RR, Vroonen L, Mannelli M, Fassnacht M, Beuschlein F, Eisenhofer G, Cascón A, Al-Shahrour F, Robledo M. PheoSeq: a targeted next-generation sequencing assay for pheochromocytoma and paraganglioma diagnostics. J Mol Diagn 2017;19:575-88.
8 Lenglet M, Robriquet F, Schwarz K, Camps C, Couturier A, Hoogewijs D, Buffet A, Knight SJL, Gad S, Couvé S, Chesnel F, Pacault M, Lindenbaum P, Job S, Dumont S, Besnard T, Cornec M, Dreau H, Pentony M, Kvikstad E, Deveaux S, Burnichon N, Ferlicot S, Vilaine M, Mazzella J-M, Airaud F, Garrec C, Heidet L, Irtan S, Mantadakis E, Bouchireb K, Debatin K-M, Redon R, Bezieau S, Bressacde Paillerets B, Teh BT, Girodon F, Randi M-L, Putti MC, Bours V, Van Wijk R, Göthert JR, Kattamis A, Janin N, Bento C, Taylor JC, Arlot-Bonnemains Y, Richard S, Gimenez-Roqueplo A-P, Cario H, Gardie B. Identification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood 2018;132:469-83.
9 Maher ER, Neumann HP, Richard S. Von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 2011;19:617-23.
10 Toledo RA, Burnichon N, Cascon A, Benn DE, Bayley J-P, Welander J, Tops CM, Firth H, Dwight T, Ercolino T, Mannelli M, Opocher G, Clifton-Bligh R, Gimm O, Maher ER, Robledo M, Gimenez-Roqueplo A-P, Dahia PLM, NGS in PPGL (NGSnPPGL) Study Group. Consensus statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat Rev Endocrinol 2017;13:233-47.
11 Lenders JWM, Duh Q-Y, Eisenhofer G, Gimenez-Roqueplo A-P, Grebe SKG, Murad MH, Naruse M, Pacak K, Young WF, Endocrine Society. Pheochromocytoma and paraganglioma: an endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2014;99:1915-42.
12 Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med 2015;17:405-23.
13 Hoefling C, Schmidt H, Meinhardt M, Lohse A, Taubert H, Fuessel S, Schmidt U, Schuster K, Baretton G, Wirth MP, Meye A. Comparative evaluation of microsatellite marker, AP-PCR and CGH studies in primary renal cell carcinoma. Int J Mol Med 2004;13:835-42.
14 Girolami F, Passerini I, Gargano D, Frusconi S, Villari D, Nicita G, Torricelli F. Microsatellite analysis of chromosome 3p region in sporadic renal cell carcinomas. Pathol Oncol Res 2002;8:241-4.
15 Favier J, Meatchi T, Robidel E, Badoual C, Sibony M, Nguyen AT, Gimenez-Roqueplo A-P, Burnichon N. Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol 2020;33:57-64.
16 Zeka F, Vanderheyden K, De Smet E, Cuvelier CA, Mestdagh P, Vandesompele J. Straightforward and sensitive RT-qPCR based gene expression analysis of FFPE samples. Sci Rep 2016;6:21418.
17 van Asselt SJ, de Vries EG, van Dullemen HM, Brouwers AH, Walenkamp AM, Giles RH, Links TP. Pancreatic cyst development: insights from von Hippel-Lindau disease. Cilia 2013;2:3.
18 Mircescu H, Wilkin F, Paquette J, Oligny LL, Decaluwe H, Gaboury L, Nolet S, Van Vliet G, Deal C. Molecular characterization of a pediatric pheochromocytoma with suspected bilateral disease. J Pediatr 2001;138:269-73.
19 Ivanov SV, Kuzmin I, Wei MH, Pack S, Geil L, Johnson BE, Stanbridge EJ, Lerman MI. Down-Regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. Proc Natl Acad Sci U SA 1998;95:12596-601.
20 Pinato DJ, Ramachandran R, Toussi STK, Vergine M, Ngo N, Sharma R, Lloyd T, Meeran K, Palazzo F, Martin N, Khoo B, Dina R, Tan TM. Immunohistochemical markers of the hypoxic response can identify malignancy in phaeochromocytomas and paragangliomas and optimize the detection of tumours with VHL germline mutations. Br J Cancer 2013;108:429-37.
21 Stillebroer AB, Mulders PFA, Boerman OC, Oyen WJG, Oosterwijk E. Carbonic anhydrase IX in renal cell carcinoma: implications for prognosis, diagnosis, and therapy. Eur Urol 2010;58:75-83.
22 Castro-Vega LJ, Letouzé E, Burnichon N, Buffet A, Disderot P-H, Khalifa E, Loriot C, Elarouci N, Morin A, Menara M, Lepoutre-Lussey C, Badoual C, Sibony M, Dousset B, Libé R, Zinzindohoue F, Plouin PF, Bertherat J, Amar L, de Reyniès A, Favier J, Gimenez-Roqueplo A-P. Multi-Omics analysis defines core genomic alterations in pheochromocytomas and paragangliomas. Nat Commun 2015;6:6044.

23 López-Jiménez E, Gómez-López G, Leandro-García LJ, Muñoz I, Schiavi F, MonteroConde C, de Cubas AA, Ramires R, Landa I, Leskelä S, Maliszewska A, Inglada-Pérez L, de la Vega L, Rodríguez-Antona C, Letón R, Bernal C, de Campos JM, Diez-Tascón C, Fraga MF, Boullosa C, Pisano DG, Opocher G, Robledo M, Cascón A. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol 2010;24:2382-91.
24 Gordeuk VR, Sergueeva AI, Miasnikova GY, Okhotin D, Voloshin Y, Choyke PL, Butman JA, Jedlickova K, Prchal JT, Polyakova LA. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004;103:3924-32.
25 van der Tuin K, Mensenkamp AR, Tops CMJ, Corssmit EPM, Dinjens WN, van de HorstSchrivers ANA, Jansen JC, de Jong MM, Kunst HPM, Kusters B, Leter EM, Morreau H,
van Nesselrooij BMP, Oldenburg RA, Spruijt L, Hes FJ, Timmers HJLM. Clinical aspects of SDHA-Related pheochromocytoma and paraganglioma: a nationwide study. J Clin Endocrinol Metab 2018;103:438-45.
26 Eisenhofer G, Lenders JWM, Timmers H, Mannelli M, Grebe SK, Hofbauer LC, Bornstein SR, Tiebel O, Adams K, Bratslavsky G, Linehan WM, Pacak K. Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin Chem 2011;57:411-20.
27 Ben Aim L, Pigny P, Castro-Vega LJ, Buffet A, Amar L, Bertherat J, Drui D, Guilhem I, Baudin E, Lussey-Lepoutre C, Corsini C, Chabrier G, Briet C, Faivre L, Cardot-Bauters C, Favier J, Gimenez-Roqueplo A-P, Burnichon N. Targeted next-generation sequencing detects rare genetic events in pheochromocytoma and paraganglioma. J Med Genet 2019;56:513-20.

Supplementary Table S1: Individual clinical and tumor characteristics of patients in "PPGL" cohort. M: male, F: female, HN: head and neck PPGL, TAP: thoracic, abdominal or pelvic PPGL, PCC: pheochromocytoma, NA: not available.

Number	Age at diagnostic	Sex	Single or multiple PPGL	Malignant PPGL	Localization of PPGL	Family history of PPGL
PPGL1	54	NA	Single		HN	
PPGL2	NA	NA	Multiple		PCC	
PPGL3	16	NA	Single		TAP	
PPGL4	76	NA	Single		PCC	
PPGL5	44	NA	Single		PCC	
PPGL6	47	NA	Single		PCC	
PPGL7	47	NA	Single		PCC	
PPGL8	38	NA	Single		HN	
PPGL9	59	NA	Single		PCC	
PPGL10	74	NA	Single		HN	
PPGL11	42	NA	Single		PCC	
PPGL12	52	NA	Single		PCC	
PPGL13	13	NA	Multiple		TAP	
PPGL14	8	NA	Single		PCC	
PPGL15	45	NA	Single		PCC	
PPGL16	47	NA	Single		PCC	
PPGL17	26	NA	Single		PCC	
PPGL18	45	NA	Single		PCC	
PPGL19	44	NA	Single		PCC	
PPGL20	35	NA	Single	Yes	HN	
PPGL21	44	NA	Single		PCC	
PPGL22	33	NA	Single		PCC	
PPGL23	60	NA	Single		TAP	
PPGL24	48	NA	Single		TAP	
PPGL25	59	NA	Single		PCC	
PPGL26	47	NA	Single		PCC	
PPGL27	22	NA	Single		PCC	
PPGL28	54	NA	Single		PCC	
PPGL29	66	NA	Single		PCC	
PPGL30	24	NA	Multiple		TAP	
PPGL31	42	NA	Single	Yes	TAP	
PPGL32	59	NA	Single		TAP	
PPGL33	59	NA	Single		TAP	
PPGL34	70	NA	Single		HN	
PPGL35	38	NA	Single		TAP	
PPGL36	80	NA	Single		PCC	
PPGL37	57	NA	Single		PCC	
PPGL38	60	NA	Single		PCC	
PPGL39	32	NA	Single		PCC	
PPGL40	75	NA	Single		HN	
PPGL41	64	NA	Single		TAP	
PPGL42	35	NA	Single		PCC	
PPGL43	35	NA	Single	Yes	TAP	
PPGL44	47	NA	Single		PCC	
PPGL45	59	NA	Single		PCC	
PPGL46	51	NA	Single		HN	
PPGL47	30	NA	Single		TAP	
PPGL48	36	NA	Single		PCC	
PPGL49	75	NA	Single		HN	
PPGL50	67	NA	Single		TAP	
PPGL51	62	NA	Single		PCC	
PPGL52	66	NA	Single		PCC	
PPGL53	35	NA	Single		TAP	
PPGL54	69	NA	Single		PCC	
PPGL55	32	NA	Single		PCC	
PPGL56	64	NA	Single		PCC	
PPGL57	38	NA	Single		HN	
PPGL58	67	NA	Single		PCC	
PPGL59	55	NA	Single		PCC	
PPGL60	18	NA	Single		TAP	
PPGL61	36	NA	Single		PCC	
PPGL62	47	NA	Single		HN	
PPGL63	80	NA	Single		HN	
PPGL64	43	NA	Single		HN	
PPGL65	67	NA	Single		PCC	
PPGL66	78	NA	Single		HN	
PPGL67	66	NA	Single		TAP	
PPGL68	78	NA	Single		PCC	
PPGL69	47	NA	Single		PCC	
PPGL70	35	NA	Single		PCC	
PPGL71	64	NA	Single		TAP	
PPGL72	NA	NA	Single		PCC	
PPGL73	44	NA	Single		PCC	
PPGL74	43	NA	Single		PCC	
PPGL75	58	NA	Single		PCC	
PPGL76	75	NA	Single		HN	
PPGL77	51	NA	Single		PCC	
PPGL78	70	NA	Single		PCC	
PPGL79	70	NA	Single		PCC	
PPGL80	46	NA	Single		HN	
PPGL81	36	NA	Single		PCC	
PPGL82	68	NA	Single		HN	
PPGL83	52	NA	Single		PCC	
PPGL84	45	NA	Single		TAP	
PPGL85	47	NA	Single		PCC	
PPGL86	28	NA	Single		HN	
PPGL87	41	NA	Single		PCC	
PPGL88	42	NA	Single		TAP	
PPGL89	52	NA	Single		PCC	Yes

Number	Age at diagnostic	Sex	Family history of VHL tumors	Localization (1)	Localization (2)	Localization (3)	Localization (4)
Multiple VHL tumors1	69	NA	No	PCC	RCC		
Multiple VHL tumors2	53	F	No	PCC	PET		
Multiple VHL tumors3	66	F	No	PCC	PET		
Multiple VHL tumors ${ }^{\text {a }}$	44	M	No	RCC	PET		
Multiple VHL tumors5	26	м	No	Multiple RCC			
Multiple VHL tumors6	47	M	No	PCC	RCC		
Multiple VHL tumors7	23	M	No	PCC	RCC		
Multiple VHL tumors8	26	M	No	Multiple RCC			
Multiple VHL tumors9	31	F	No	PCC	RCC		
Multiple VHL tumors10	48	M	No	RCC	Epididymal cystadenoma		
Multipl VHL tumors1	49	NA	No	Multiple RCC			
Multiple VHL tumors12	49	NA	No	Multiple RCC			
Multiple VHL tumors13	48	NA	No	Multiple RCC			
Multiple VHL tumors14	81	NA	No	Multiple RCC	Renal cyst		
Multiple VHL tumors15	53	NA	No	Multiple RCC			
Multiple VHL tumors16	57	NA	No	Multiple RCC			
Multiple VHL tumors17	47	NA	No	Multiple RCC			
Multipl VHL tumors18	44	NA	No	Multiple RCC			
Multiple VHL tumors19	29	NA	No	RCC	Multiple renal cysts	Multiple pancreatic cysts	
Multipl VHL tumors20	63	NA	No	Multiple RCC	Pancreatic cyst		
Multiple VHL tumors21	61	NA	No	PET	Multiple RCC.		
Multiple VHL tumors22	NA	F	No	RCC	Multiple pancreatic cysts		
Multiple VHL tumors23	NA	M	No	RCC	Polycythemia		
Multiple VHL tumors24	na	NA	No	RCC	Polycythemia		
Multiple VHL tumors25	81	M	No	PGL	RCC		
Multiple VHL tumors26	65	M	No	PGL TAP	Multiple renal cysts		
Multiple VHL tumors27	39	F	No	PCC	Pancreatic cyst		
Multiple VHL tumors28	47	M	No	PGL TAP	PET		
Multiple VHL tumors29	41	M	No	PCC	RCC		
Multiple VHL tumors30	55	M	No	PCC	Multiple renal cysts		
Multiple VHL tumors31	47	F	No	PCC	PET		
Multiple VHL tumors32	78	F	No	PCC	Multiple renal cysts	PET	Pancreatic cyst
Multiple VHL tumors33	57	F	No	PCC	RcC	PET	
Multiple VHL tumors34	NA	м	No	PCC	РET		
Multiple VHL tumors35	63	M	No	PCC	${ }^{\text {RCC }}$		
Multiple VHL tumors36	58	M	No	PCC	RCC		
Multiple VHL tumors37	61	F	No	PCC	Pancreatic cyst		
Multiple VHL tumors38	51	M	No	PCC	${ }^{\text {RCC }}$		
Multiple VHL tumors39	63	M	No	Multiple RCC	PET		
Multiple VHL tumors40	69	M	No	RCC	PET		
Multiple VHL tumors41	${ }^{43}$	F	No	Multiple pancreatic cysts			
Multiple VHL tumors42	NA	M	No	Multiple RCC	${ }_{\text {PET }}$		
Multiple VHL tumors43	NA	F	No	RCC	PET		
Multiple VHLL tumors44	58	${ }_{\text {F }}$	No	Multiple PET			
Multiple VHL tumors45 Multiple VHL tumors46	${ }_{\text {NA }}$	$\stackrel{\text { F }}{\text { M }}$	No No	Multiple PET Multiple renal cysts	PET		
Multiple VHL tumors47	56	M	No	Multiple renal cysts	Multiple PET		
Multiple VHL tumors48	NA	F	No	Multiple pancreatic cysts			
Multiple VHL tumors49	70	${ }_{\text {F }}$	No	Multiple pancreatic cysts			
Multiple VHL tumors50	64	F	No	Multiple pancreatic cysts			
Multiple VHL tumors51	NA	F	No	PET	Pancreatic cyst		
Multiple VHL tumors52	49	F	No	RCC	PET		
Multiple VHL tumors53	63	F	No	Multiple PET			
Multiple VHL tumors54	58	M	No	RCC	PET		
Multiple VHL tumors55	${ }_{64}^{61}$	M	No	${ }_{\text {PET }}^{\text {RCC }}$	${ }_{\text {PeT }}^{\text {Pet }}$		
Multiple VHL tumors56 Multiple VHH tumors57	64 79	M	No No	PET PCC	$\underset{\text { Pancreatic cyst }}{\text { RCC }}$		
Multiple VHL tumors57	$\begin{aligned} & 79 \\ & \mathrm{NA} \end{aligned}$	${ }_{M}^{M}$	No No	$\underset{\text { Multiple eET }}{\text { PEC }}$	RCC		
Multiple VHL tumors59	59	F	No	Multiple PET			
Multiple VHL tumors60	na	м	No	Multiple PET			
Multiple VHL tumors61	NA	M	No	Multiple PET			
Multiple VHL tumors62	64	M	No	Multiple PET			
Multiple VHL tumors63	58	${ }_{F}^{\text {F }}$	No	Multiple renal cysts	${ }_{\text {PET }}$		
Multiple VHL Lumors64	NA 61	${ }_{\text {F }}^{\text {F }}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Multiple renal cysts	PET		
Multiple VHL tumors66	76	F	No	RCC	Multiple PET		
Multiple VHL tumors67	52	F	No	${ }^{\text {RCC }}$	PET		
Multiple VHL tumors68	${ }_{69}^{11}$	${ }_{\text {F }}$	Yes (Pancreatic cyst)	PET	${ }^{\text {Pancreatic cyst }}$		
Multiple VHL tumors69	69 55	$\stackrel{N}{\text { NA }}$	No	PGL TAP PGITAP	Polycythemia Polycythemia		
Multiple VHL Lumors70 Single VHL tumor1	55 51	$\mathrm{F}_{\mathrm{F}}^{\mathrm{F}}$	No				
Single VHL tumor2	54	M	No	Multiple renal cysts			
Single VHL tumor3	12	${ }_{\text {F }}$	No	${ }_{\text {RCC }}^{\text {RCC }}$			
Single VHL tumor4 Single VHL tumor5	${ }_{25}^{42}$	M NA	No No	RCC Retinal hemangioblastoma			
Single VHL tumor6	14	NA	No	Retinal hemangioblastoma			
Single VHL tumor7	50	NA	No	CNS hemangioblastoma			
Single VHL tumor8	35	NA	No	CNS hemangioblastoma			
Single VHL tumor9 Single VHL tumor 10	${ }_{21}^{32}$	NA	No	Medulla hemangioblastoma CNS hemangioblastoma			
Single VHL tumor11	17	NA	No	CNS Semangioblastoma CNS hemangioblastoma			
Single VHL tumor 12	36	NA	No	CNS hemangioblastoma			
Single VHL tumor ${ }^{\text {a }}$ S	22	NA	No	CNS hemangioblastoma			
Single VHL tumor14 Single VHL tumor15	${ }^{22}$	NA	No	${ }^{\text {CNS }}$ Cemangioblastoma			
Single VHL tumor15	14 30	NA NA	No No	CNS hemangioblastoma CNS hemangioblastoma			
Single VHL tumor17	35	NA	No	CNS hemangioblastoma			
Single VHL tumor 18	22	NA	No	Retinal hemangioblastoma			
Single VHL tumor19	33	NA	No	Retinal hemangioblastoma			
Single VHL L umor20 Single VHL tumor21	37 23	NA NA	No No	CNS hemangioblastoma CNS hemangioblastoma			
Single VHL tumor22	16	NA	No	CNS hemangioblastoma			
Single VYL tumor23	17	NA	No	Retinal hemangioblastoma			
Single VHL tumor24	${ }_{\text {NA }}^{19}$	NA NA	No No	CNS hemangioblastoma CNS hemangioblastoma			
Single VHL tumor26	29	M	No	Retinal hemangioblastoma			
Single VHL tumor 27	na	F	No	Endolymphatic sac tumor			
Single VHL tumor28	39	M	No	RCC			
Single VHL tumor29 Single VHL tumor30	25	${ }_{\text {F }}$	No	Endolymphatic sac tumor			
Single VHL t umor30 Single VHL tumor31	66 14	$\stackrel{\mathrm{F}}{\mathrm{F}}$	No No	Multiple pancreatic cysts PET			
Single VHL tumor32	41	F	No	Multiple pancreatic cysts			
Single VHL tumor33	22	${ }_{5}^{\text {F }}$	No	Endolymphatic sac umor			
Single VHL tumor34	34	M	No	CNS hemangioblastoma			
Single VHL tumor35	18	M		Pancreatic cyst			
Single VHL Lumor36 Single VHL tumor37	67 58	${ }_{M}^{M}$	No No	Multiple pancreatic cysts Multiple renal cysts			
Single VHL tumor38	38	F	No	Retinal hemangioblastoma			
Single VHL tumor 39	${ }^{60}$	F	No	CNS hemangioblastoma			
Single VHL tumor40 Single VHL tumor 41	30	F	No	Pancreatic cyst			
Single VHL tumor ${ }^{\text {a }}$	59 40	${ }_{\text {M }}^{\text {F }}$	No No	$\underset{\text { Retinal hemangioblastoma }}{\text { PET }}$			
Single VHL tumor 43	27	F	No	Retinal hemangioblastoma			
Single VHL tumor 44	71	F	No	Pancreatic cyst			
Single VHL tumor45 Single VHL tumor46	59 11	${ }_{\text {F }}^{\text {F }}$	No No	$\underset{\text { CNS hemangioblastoma }}{\text { Retinal hemangioblastoma }}$			
Single VHL tumor46 Single VHL tumor47	11 43	${ }_{\text {F }}^{\text {F }}$	No No	Retinal hemangioblastoma PET			
Single VHL tumor 48	34	F	No	PET			
Single VHL tumor49	${ }^{23}$	F	No	${ }^{\text {CNS }}$ hemangioblastoma			
Single VHL tumor50 Single VHL tumor51	31 NA	${ }_{\text {M }}$	${ }_{\text {No }}^{\text {No }}$	$\underset{\text { CNS hemangioblastoma }}{\text { Medull hemangioblastoma }}$			

Single VHL tumor52	78	F	No	CNS hemangioblastoma			
Single VHL tumor53	NA	F	No	PET			
Single VHL tumor54	NA	м	No	PET			
Single VHL tumor55	NA	M	No	CNS hemangioblastoma			
Single VHL tumor56	NA	F	No	Multiple pancreatic cysts			
Single VHL tumor57	NA	F	No	Pancreatic cyst			
Single VHL tumor58	42	F	No	CNS hemangioblastoma			
Single VHL tumor59	NA	M	No	Endolymphatic sac tumor			
Single VHL tumor60	35	M	No	CNS hemangioblastoma			
Single VHL tumor61	25	F	No	Multiple pancreatic cysts			
Single VHL tumor62	NA	F	No	PET			
Single VHL tumor63	37	M	No	Endolymphatic sac tumor			
Single VHL tumor64	NA	M	No	Multiple pancreatic cysts			
Single VHL tumor65	45	F	No	PET			
Single VHL tumor66	40	M	No	Pancreatic cyst			
Single VHL tumor67	37	F	No	Multiple pancreatic cysts			
Single VHL tumor68	38	M	No	Multiple pancreatic cysts			
Single VHL tumor69	33	F	No	Pancreatic cyst			
Single VHL tumor70	37	M	No	Epididymal cystadenoma			
Single VHL tumor71	42	F	No	Polycythemia			
Single VHL tumor72	14	F	No	Polycythemia			
Single VHL tumor73	14	M	No	Polycythemia			
Single VHL tumor74	43	M	No	Polycythemia			
Single VHL tumor75	NA	M	No	Polycythemia			
vHL-like1	53	NA	Yes (RCC)	PCC			
vHL-like2	35	F	Yes (CNS hemangioblastoma)	RCC			
vHL-like3	73	F	Yes (RCC)	RCC			
vHL-like4	64	F	Yes (RCC)	RCC			
vHL-like5	34	F	Yes (RCC)	RCC			
vHL-like6	28		Yes (RCC)	RCC			
vHL-like7	42	M	Yes (RCC)	RCC			
vHL-like8	55	F	Yes	CNS hemangioblastoma			
VHL-like9	45	M	Yes (RCC)	PET			
VHL-like 10	70	F	Yes (RCC)	PCC			
VHL-like 11	NA	F	Yes (PET)	PGL HN			
VHL-like 12	21	F	Yes (RCC)	Bilateral PCC			
VHL-like 13	24	F	No	Retinal hemangioblastoma	RCC	PCC	
VHL-like 14	35	NA	No	CNS hemangioblastoma	RCC		
VHL-like 15	54	NA	No	Medulla hemangioblastoma	Multiple RCC	PGL TAP	
VHL-like 16	34	NA	Yes (CNS hemangioblastoma)	CNS hemangioblastoma			
VHL-like 17	42	NA	No	Multiple medulla hemangioblastomas			
VHL-like 18	35	NA	Yes (RCC)	RCC			
VHL-like 19	56	NA	Yes (RCC)	RCC			
VHL-like 20	56	NA	No	Multiple CNS hemangioblastomas			
VHL-like 21	38	NA	No	Multiple CNS hemangioblastomas	RCC		
VHL-like22	67	NA	No	Multiple CNS hemangioblastomas			
VHL-like 23	20	NA	No	Multiple CNS hemangioblastomas	PET		
VHL-like 24	NA	NA	No	Multiple retinal hemangioblastomas	RCC	Pancreatic cyst	
VHL-like 25	43	NA	Yes (CNS hemangioblastoma)	CNS hemangioblastoma			
VHL-like 26	NA	F	No	CNS hemangioblastoma	Retinal hemangioblastoma		
VHL-like 27	NA	F	No	Multiple retinal hemangioblastomas			
VHL-like 28	NA	M	No	CNS hemangioblastoma	PCC		
VHL-like 29	NA	NA	No	CNS hemangioblastoma	PCC	Renal cyst	
VHL-like 30	NA	NA	No	Multiple CNS hemangioblastomas			
VHL-like 31	NA	NA	No	CNS hemangioblastoma	Retinal hemangioblastoma	Multiple pancreatic cysts	
VHL-like 32	NA	NA	Yes (RCC)	RCC			
VHL-like 33	NA	M	Yes (RCC)	${ }_{\text {RCC }}$			
VHL-like 34	NA	F	Yes (RCC)	RCC			
VHL-like35	NA	NA	Yes	CNS hemangioblastoma			
VHL-like 36	NA	F	Yes	CNS hemangioblastoma			
VHL-like 37	NA	NA	No	CNS hemangioblastoma	RCC		
VHL-like 38	36	F	No	Multiple retinal hemangioblastomas			
VHL-like 39	NA	F	Yes	CNS hemangioblastoma	Multiple retinal hemangioblastomas	PCC	Multiple RCC
VHL-like 40	NA	M	Yes	CNS hemangioblastoma	Multiple retinal hemangioblastomas	Multiple RCC	
VHL-like 41	NA	F	No	CNS hemangioblastoma	Multiple pancreatic cysts		
VHL-like 42	NA	F	No	Multiple retinal hemangioblastomas			
VHL-like 43	NA	NA	No	CNS hemangioblastoma	Retinal hemangioblastoma		
VHL-like 44	NA	NA	No	CNS hemangioblastoma	Retinal hemangioblastoma	PCC	
VHL-like 45	NA	NA	No	Multiple CNS hemangioblastomas			
VHL-like 46	NA	F	No	CNS hemangioblastoma	Multiple retinal hemangioblastomas	Multiple RCC	Multiple pancreatic cysts
VHL-like47	37	F	Yes (RCC)	RCC			
VHL-like 48	47	M	No	CNS hemangioblastoma	RCC		
VHL-like 49	53	M	Yes (RCC)	RCC			
VHL-like 50	42	F	No	Medulla hemangioblastoma	RCC		
VHL-like 51	NA	F	No	Retinal hemangioblastoma	PCC		
VHL-like 52	69	M	No	CNS hemangioblastoma	RCC		
VHL-like53	44	F	No	Retinal hemangioblastoma	Pancreatic cyst		
VHL-like54	78	M	No	CNS hemangioblastoma	PCC		
VHL-like55	55	F	No	CNS hemangioblastoma	RCC		
VHL-like56	50	F	No	CNS hemangioblastoma	PGL TAP		
VHL-like 57	36	F	No	CNS hemangioblastoma	PGL TAP	PET	Pancreatic cyst
VHL-like58	56	M	No	CNS hemangioblastoma	PGL TAP		
VHL-like59	49 59	${ }_{\text {F }}$	No	Medulla hemangioblastoma	PCC		
VHL--ike 60	59	M	No	CNS hemangioblastoma	PCC		
VHL-like61	59	M	No	CNS hemangioblastoma	PCC		
VHL-like 62	66	F	No	Medulla hemangioblastoma	PCC		
VHL-like63	67	F	No	CNS hemangioblastoma	PCC		
VHL-like 64	$\begin{array}{r}33 \\ \hline\end{array}$	M	Yes (RCC)	PCC			
VHL-like 65	29	F	Yes (RCC)	PCC			
VHL--ike 66	15	F	No	CNS hemangioblastoma	${ }_{\text {RCC }}$		
VHL-like 67	NA	M	No	CNS hemangioblastoma	PET		
VHL-like68	NA	M	No	CNS hemangioblastoma	PCC		
VHL-like69	52		Yes (RCC)	PGL HN			
VHL-like 70	50	M	Yes (RCC)	PCC			
VHL-like71	30	M	Yes (RCC)	PCC			
VHL-like72	${ }^{48}$	M	Yes (RCC)	PCC			
VHL-like73	32	${ }_{\text {F }}$	No	CNS hemangioblastoma	PGL hn	Renal cyst	
VHL-like74	${ }^{42}$	M	No	CNS hemangioblastoma	PCC		
VHL-like75 VHL-like76	38 20	$\stackrel{\mathrm{F}}{\mathrm{F}}$	Yes (RCC) No	PGL HN CNS hemangioblastoma	PGL TAP		

