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AbsTrACT
Up to 350 million people worldwide suffer from a rare 
disease, and while the individual diseases are rare, in 
aggregate they represent a substantial challenge to 
global health systems. The majority of rare disorders 
are genetic in origin, with children under the age of 
five disproportionately affected. As these conditions 
are difficult to identify clinically, genetic and genomic 
testing have become the backbone of diagnostic testing 
in this population. in the last 10 years, next- generation 
sequencing technologies have enabled testing of multiple 
disease genes simultaneously, ranging from targeted 
gene panels to exome sequencing (eS) and genome 
sequencing (GS). GS is quickly becoming a practical first- 
tier test, as cost decreases and performance improves. 
A growing number of studies demonstrate that GS can 
detect an unparalleled range of pathogenic abnormalities 
in a single laboratory workflow. GS has the potential to 
deliver unbiased, rapid and accurate molecular diagnoses 
to patients across diverse clinical indications and 
complex presentations. in this paper, we discuss clinical 
indications for testing and historical testing paradigms. 
evidence supporting GS as a diagnostic tool is supported 
by superior genomic coverage, types of pathogenic 
variants detected, simpler laboratory workflow enabling 
shorter turnaround times, diagnostic and reanalysis yield, 
and impact on healthcare.

InTroDuCTIon
In 2017, the Global Genes Project1 estimated that 
350 million people worldwide suffer from a rare 
disease. These diseases are individually rare, but 
in aggregate they affect 4%–8% of the popula-
tion.2 3 Our curation of >3800 rare diseases listed 
by Orphanet indicates that ~80% are genetic or 
have genetic subtypes (online supplementary file 
2). Children comprise approximately half of those 
affected by a genetic disease and 30% of these chil-
dren do not live past their fifth birthday.

Medical and surgical management of birth 
defects and rare genetic diseases are dispropor-
tionately large contributors to paediatric hospi-
talisations and present an enormous challenge to 
patients and families as well as healthcare systems.4 
Children with chronic complex conditions (defined 
by length of illness) had 11- fold greater hospitalisa-
tion charges compared with others in a retrospec-
tive study of US hospitalisations for children.5 In 
a study from Western Australia, patients with rare 
disease diagnoses constituted 2% of the population 
but accounted for 10.6% of total hospital charges.6 
We recently conducted an analysis of US paediatric 

hospitalisation charges using data from 2012 and 
found that mean total costs were up to US$77 000 
higher in neonates and US$17 000 in older chil-
dren with rare disease–linked diagnostic codes, and 
that these had longer hospital stays and increased 
mortality.7

Because specific genetic diseases can be difficult 
to recognise based on clinical features alone, the 
use of genetic testing in the paediatric population is 
critical for diagnosis and treatment. In this review 
article, we review the indications for genetic and 
genomic testing and then detail the testing tech-
nologies that are used. With this background, we 
review the literature supporting GS as a first- tier 
test in children focusing on diagnostic yield, time- 
to- diagnosis, patient care, health outcomes and 
health economic impact.

ClInICAl InDICATIons for geneTIC AnD 
genomIC TesTIng
Identification of patients appropriate for genetic 
testing has evolved substantially in the last 25 
years, coincident with the ability to easily and cost- 
effectively test for an increasing number of disor-
ders. The American College of Medical Genetics 
and Genomics (ACMG) has published indications 
for cases in which the use of genomic sequencing 
approaches should be considered as well as a policy 
statement discussing the clinical use of aetiological 
diagnosis via genetic and genomic testing.8 Genetic 
and genomic sequencing approaches should be 
considered in the clinical diagnostic assessment in 
several scenarios including those in which a patient 
presents with a likely genetic disorder but a single 
genetic diagnosis or specific targeted testing is not 
obvious. Expanding on this idea, we suggest some 
additional general features of genetic disorders that 
non- specialists may use to help recognise when 
genomic testing may be appropriate (box 1).

ApproAChes To geneTIC TesTIng
Prior to the introduction of next- generation 
sequencing (NGS), several technologies were used 
to identify the basis of genetic diseases. The oldest, 
G- banded karyotype analysis can detect structural 
and numerical chromosome aberrations as well as 
mosaicism. However, the diagnostic yield is limited 
because abnormalities below 5–10 megabases often 
go undetected.9 In the early 1990s, fluorescence 
in situ hybridisation (FISH) was developed. FISH 
detects genetic abnormalities below the threshold of 
the G- banded karyotype, facilitating the detection of 
submicroscopic events (eg, deletions adjacent to the 
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box 1. Indications for genome sequencing

 ► The phenotype or family history data strongly implicate a genetic aetiology, but the phenotype does not correspond with a specific 
disorder for which a genetic test targeting a specific gene is available on a clinical basis.

 ► A clinical diagnosis of a disorder known to be caused by multiple genes (extensive locus heterogeneity).
 ► Clinical features which are insufficient by themselves to make a clinical diagnosis, but that are known to be associated with multiple 
genetic disorders.

 ► A clinical diagnosis of a known genetic disorder in which single gene or other targeted testing has been negative.
 ► The patient has an atypical clinical course for the disease under consideration (eg, unexpected severity, duration, failure of response to 
therapy, idiosyncratic drug reaction).

 ► Early onset of disorder typically seen in adulthood.
 ► Rare and specific clinical or laboratory abnormalities (eg, laboratory test results far outside of expected ranges, rare anatomical 
variants, etc).

 ► Atypical or complex combinations of clinical abnormalities or additional signs and symptoms not explained by a previous molecular 
diagnosis.

telomeres) involved in disease. FISH, however, is constrained to 
assessment of chromosome regions that can be targeted by FISH 
probes and abnormalities below 50–300 kb cannot be detected.10

Karyotype and FISH have largely been replaced by chromosomal 
microarray (CMA), which allows for simultaneous evaluation of all 
chromosomes for copy number imbalances and in some instances 
uniparental isodisomy.11 The use of CMA has revealed that submi-
croscopic cytogenetic abnormalities are significant contributors to 
birth defects and neonatal neurological disorders.12 CMA is often 
offered as a first- tier test in the assessment of children presenting 
with diseases thought to have a genetic basis, such as multiple 
congenital abnormalities and developmental delay (DD) with 
a detection rate between 15% and 20% depending on the clin-
ical indication.13–15 There are differences among CMA platforms 
that affect the range of abnormalities detected. Arrays based on 
standard sets of single- nucleotide polymorphisms may have some-
what lower resolution for particular genes compared with custom 
array comparative genomic hybridisation but are superior for the 
detection of copy number variant (CNV) mosaicism as well as clin-
ically important copy neutral abnormalities, including uniparental 
isodisomy and close consanguinity. CMA cannot detect balanced 
chromosomal rearrangements such as balanced translocation and 
inversions.16 Dideoxy (Sanger) sequencing, developed in 1977,17 
examines short stretches of DNA for single nucleotide variants 
(SNVs), small insertions and small deletions.

The ACMG affirms that the definitive diagnosis of a genetic 
disease has clinical use for individuals.8 Given the potential use 
of a diagnosis, the limitations of these standard techniques is 
of great concern and presents a major obstacle to progress in 
the management of patients with suspected genetic disease. For 
example, the respective diagnostic yields for CMA for common 
disorders such as autism spectrum disorder (ASD) or DD in 
the paediatric population are, on average, quite low (9.3%–
13.1%)18 19 and the diagnostic rates for individuals with other 
commonly encountered but phenotypically non- specific diseases 
(eg, non- syndromic birth defects) may be similar or even lower.20

Time- to- diagnosis is an important metric to consider in 
children with rare genetic diseases, particularly critically ill 
neonates admitted to neonatal intensive care units and children 
admitted to other intensive care settings. Genetic disease may 
present fewer specific clinical features in this population and 
many neonates either die or are discharged before a diagnosis 
is obtained. Unfortunately, standard genetic testing strategies 
often involve a series of tests which can take weeks or sometimes 
months to complete. Diagnostic evaluation typically involves 
multiple specialist consultations, laboratory tests, imaging 

studies and tissue biopsies. The length of the diagnostic odyssey 
for rare diseases ranges from 5 to 7 years1 and for many is ulti-
mately disappointing when a diagnosis is not achieved.21

Genomic medicine today features information obtained from 
ES and GS in disease diagnosis and management. Large gene 
sequencing panels and ES via NGS have altered the way new 
disease- causing genes are discovered in addition to reducing the 
time- to- diagnosis.3 22 To date, ES has been used extensively in 
both clinical and research settings.23–26 Large- scale use of GS is 
also underway through the Undiagnosed Diseases Network,27 
the 100,000 Genomes Project28 and other national programmes. 
Rapidly falling costs and faster time- to- results afforded by 
NGS have driven clinical adoption.29 The first use of NGS for 
rare disease research occurred with the identification of genes 
responsible for Freeman- Sheldon syndrome, Miller syndrome 
and Schinzel- Giedion syndrome,30 31 and its clinical use was 
demonstrated in a patient who received a life- saving bone 
marrow transplant following diagnosis with NGS.32 Now, more 
than 180 novel genes involved in rare diseases are added each 
year to the list of known disease- causing genes,3 30 but this pace 
of discovery may be reaching a plateau. Going forward, greater 
emphasis will be placed on the completeness of the genetic diag-
nostic evaluation (identification of all disease- causing alleles) for 
rare disorders that are difficult to detect using standard genetic 
testing techniques or that require a combination of tests. Because 
GS can close some of this gap, it shows exciting potential for effi-
ciently solving a greater proportion of rare disease cases.

genome sequenCIng for geneTIC DIseAse DIAgnosIs
GS has the ability to identify a variety of molecular aetiologies for 
genetic disease. We reviewed the abstracts of >2000 publications 
focusing on 36 studies (see online supplementary file 1 for the list 
and selection methodology) that address the most important labo-
ratory and clinical factors that influence efficacy in diagnosis.

genome sequencing provides a superior exome
ES enables interrogation of the approximately 1% to 1.5% 
of the human genome which is protein- coding. ES is widely 
used in both research and clinical practice, with studies 
showing improved diagnostic yield compared with histor-
ical approaches33 34 in patients with undiagnosed neurode-
velopmental disorders,35 children with intellectual disability 
(ID),36 37 ASD18 and many others. There is increasing evidence, 
however, that ES cannot capture the complete range of patho-
genic variation across the exome. For example, ES only covers 
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approximately 98% of the exome and results from a recent 
study suggest that the current standard of 120× coverage 
for ES may be insufficient for consistent breadth of coverage 
across the exome.34 For genes that the ACMG recommend 
be evaluated for secondary findings, Meienberg et al showed 
that GS provided 100% coverage of ACMG genes versus 
75% by ES due to incomplete exon coverage of a number of 
exons in ACMG genes.38 Further, the same study found that 
for RefSeq genes, 9% of the first exons were not covered by 
ES while GS provided complete coverage. Additional studies 
show that GS coverage and variant calling is less affected by 
GC content,38 has more complete coverage of exons39 40 and 
has more even coverage than ES. As a result GS requires lower 
average coverage to obtain the same accuracy in variant calling 
compared with ES.41 Additionally, GS has less dispersion in 
the distribution of allele coverage allowing higher accuracy in 
calling heterozygous positions compared with ES.42

genome sequencing and detection of pathogenic variants
GS examines approximately 90% of the human genome43 offering 
a more comprehensive analysis than ES40 and a growing body of 
literature is demonstrating that GS can provide a molecular diag-
nosis in cases where ES did not (see online supplementary table 
2 for examples).44–47 Intergenic and intronic pathogenic variants 
are growing in number and importance48 spanning from patho-
genic SNVs to more complex variations.49 50 The detection of 
coding CNVs that are smaller than three exons may require GS 
because pathogenic single- exon CNVs are frequently missed by 
ES analyses.51 Further, balanced chromosomal rearrangements, 
importantly those with high recurrence risks (eg, insertion- 
translocations), are difficult to detect with CMA and ES, 
whereas they may be detected with GS.52 It should be noted that 
GS cannot detect all chromosomal abnormalities.53 GS data may 
be analysed to identify pathogenic repeat expansions54 and GS 
from libraries constructed using the Hi- C protocol or through 
other sequencing technologies can be used to produce a phased 
genome.55 For cases involving a recessive disorder, variants in cis 
can be distinguished from variants in trans obviating the need to 
test other family members to establish the phase of the variants. 
This technique can also detect chromosomal rearrangements.56

genome sequencing and mitochondrial disorders
Mitochondrial disorders are a phenotypically and genetically 
heterogeneous group of diseases making diagnosis particularly 
challenging. NGS- based tests of the mitochondrial genome can 
detect common and rare mitochondrial SNVs and deletions.57 
NGS- based testing can also detect low levels of heteroplasmic 
changes which is difficult using conventional tests such as Sanger 
sequencing.57 58 NGS tests have been developed that evaluate 
both the mitochondrial genome and a panel of nuclear genes 
that cause mitochondrial disease in a single test.59 NGS- based 
mitochondrial genome analysis followed by ES can be effective. 
In one study, causative pathogenic variants in the mitochondrial 
genome were found in 20% of the patients while ES of nuclear 
genes found the aetiology in an additional 49% of the patients.58 
GS data include both the mitochondrial genome and all of the 
data found in ES therefore making this a more efficient method 
to detect mitochondrial disorders.38 51 57 58 GS at 30–40× 
coverage, suitable for nuclear gene variant calling, results in 
5000–9000× mitochondrial genome coverage and readily lends 
itself to mitochondrial SNV analysis >5% allele fraction (RJT, 
personal communication).

genome sequencing reduces time-to-diagnosis
In the paediatric and neonatal population with rare, undiagnosed 
or genetic disesease, reducing the time- to- diagnosis is important 
because the progression of disease can be rapid. There are approx-
imately 4000 genes with a phenotype- causing mutation,60 and 
many present within the first 28 days of life. For neonatal inten-
sive care unit admissions, serial genetic testing may be too slow 
for optimal clinical management. Additionally, the full clinical 
phenotype may not manifest in neonates given the early stage at 
which disease is suspected. Finally, a large degree of clinical and 
genetic heterogeneity is often noted in acutely ill neonates, which 
further contributes to the lack of a timely molecular diagnosis for 
suspected genetic diseases.

Recent technological developments in rapid GS have high-
lighted its use in children, particularly critically ill neonates. A 
few studies examining this population have reported time- to- 
diagnosis ranges of 5 to 8 days61 to as little as 19.5 hours.62 In 
these studies, the remarkable speed is due in part to advances in 
bioinformatics processes including the field- programmable gate 
array based pipeline and automation of the tertiary pipeline.63 
In a direct comparison of GS with ES in children with undiag-
nosed neurodevelopmental disorders, Soden et al35 reported a 
significant difference between the two technologies wherein the 
time- to- diagnosis using rapid GS was significantly less than ES.

genome sequencing provides high diagnostic yield
Numerous studies have demonstrated the impact of NGS- based 
approaches on improved diagnostic yield. A recent systematic 
review comparing the diagnostic rates of NGS- based tests (ie, 
ES and GS) and CMA found that the former had significantly 
greater diagnostic use compared with the latter.43 Direct compar-
isons between the diagnostic yields of GS and ES are difficult to 
make as rates tend to vary based on a variety of factors including 
patient selection bias, clinical indication and the continual 
discovery of disease- causing variants (see table 1).24 Importantly, 
there are studies reporting higher diagnostic yield of GS over 
other tests (including standard genetic testing, CMA and ES) in 
children with severe intellectual disability,64 neurodevelopmental 
disorder,35 developmental delay of unknown aetiology,65 critically 
ill neonates61 66 and early infantile epileptic encephalopathy.46

genome sequencing and reanalysis
NGS has significantly increased the pace of discovery of new 
disease–gene relationships allowing for increased diagnostic 
yields when GS and ES are reanalysed at a later time. Reanalysis 
yields increase with both GS and ES; however, this increase is 
oftentimes more pronounced in GS cases due in part to the fact 
that GS offers better coverage of coding exons than ES.67 It is 
important to acknowledge that significant improvements in exon 
capture have allowed for increased detection of pathogenic vari-
ants with ES. However, the argument can be made that obtaining 
a comprehensive data set with GS initially would negate the need 
to repeat ES with those technological improvements.

Clinical use of genomic testing
In its narrowest sense, clinical use refers to the ability of a screening 
or diagnostic test to prevent or ameliorate adverse health outcomes 
such as mortality, morbidity or disability through the adoption of 
efficacious treatments conditioned on test results.68 Achieving a 
genetic diagnosis in children is important because it can lead to 
early and informed disease management and in some cases a life- 
saving intervention. For example, identification of two compound 
heterozygous deletions in a premature baby with refractory 
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hypotension and anuria (a condition that is typically lethal) with 
NGS- targeted gene panels led to a treatment regimen that 
improved renal function such that only mild residual chronic renal 
failure symptoms were present later in life.69 Similarly, classifica-
tion of epileptic seizures at the molecular level via genetic diagnosis 
can inform which antiepileptic treatment will produce the best 
results70 and sometimes reverse epileptogenic abnormalities.71 The 
clinical use of ES has been established,72 as evidenced by patients 
with epileptic encephalopathy in which physical therapy practices 
were altered and ineffective feeding behaviours were discontinued 
following diagnosis via ES.14

A growing number of studies have demonstrated the clin-
ical use of GS. For example, in a small, retrospective study of 
critically ill infants that received diagnosis with rapid GS, 65% 
reported immediate clinical usefulness of the diagnosis, 20% 
received a diagnosis with strongly favourable effects on disease 
management and 30% began palliative care.61 73 Another study 
examined a clinically heterogeneous paediatric cohort in which 
diagnosis with GS had a significant impact on clinical care 
beyond genetic testing and included changes in disease manage-
ment based on published management guidelines, case reports 
or known function of the involved genes.65 Similarly, in children 
with neurodevelopmental disorders of unknown aetiology, 49% 
reported a change in clinical care or impression of pathophysi-
ology following diagnosis with GS.35 While each of the studies 
were small or moderate in size (n≤119), the data build on the 
established clinical use of ES. An increasing number of studies 
focus on the use of GS as a first- tier test, rather than a last resort 
solution demonstrating its clinical use.44 65 73 As more GS studies 
appear, the clinical use of GS versus ES will become clear.

health economic impact of genome sequencing
The duration of the diagnostic odyssey is closely related to 
healthcare costs. For patients with rare and undiagnosed genetic 
disease, the cost of a standard diagnostic work- up is high, as 
additional tests, procedures, some requiring general anaesthesia, 
and specialist consultations are required when prior analyses fail 
to provide a diagnosis. For example, one study of children with 
neurodevelopmental disorders in the USA estimated that the cost 
of tests prior to receiving an NGS- based diagnosis was US$19 
100.35 Thus, a comprehensive NGS- based approach is more cost- 
effective than iterative single- gene testing. A recent microcosting 
study showed that a genomic sequencing care pathway, where 
genomic sequencing is performed when genetic disease is initially 
suspected, can provide an efficient and economical approach to 
arriving at a diagnosis saving healthcare dollars.74 Incorporation 
of ES earlier in the diagnostic journey resulted in an incremental 
cost savings of US$6838 per additional diagnosis compared with 
the standard diagnostic pathway in children suspected of having 
a monogenic disorder.75 Likewise, ES achieved more conclusive 
diagnoses than did the standard care pathway without incurring 
higher costs in a group of children with complex neurological 
disorders of suspected genetic origin.76 Cost of care estimates 
from a recent Undiagnosed Disease Network (UDN) study 
suggest that the UDN approach (in which 74% of diagnoses 
were made with ES or GS) has the potential to be cost- effective 
by avoiding an expensive diagnostic odyssey. For example, prior 
to acceptance to the UDN, the average cost of care was US$305 
428 while the average cost of the UDN evaluation was US$18 
903, representing 6% of the total cost.27

The cost of GS is currently higher than ES; however, it is 
important to keep in mind the advantages of GS (eg, detec-
tion of trinucleotide repeat diseases, CNVs, disorders of the 

mitochondrial genome) and therefore the added value of GS. 
In a microcosting study of children with ASD, the estimated 
cost of GS ($C2857) was more than that of CMA ($C744) 
and ES ($C1655). The study points out that automation of GS 
allows many samples to be simultaneously processed resulting 
in reduced labour time compared with ES.77 The authors 
noted that the higher cost of GS was largely due to greater 
bioinformatics demand. Technological improvements in bioin-
formatics automation and interpretation are predicted to bring 
the cost of GS closer to that of ES.

When comparing the cost of GS and ES, it is important to 
consider the cost drivers for the different technologies: greater 
than 90% of the cost of GS is directly related to sequencing; 
with ES, the cost is mainly due to the DNA capture assay and 
associated labour.39 Over time, sequencing costs have greatly 
decreased,39 so performing GS early on in the diagnostic pathway 
may prove to be a less expensive alternative to performing CMA 
and later ES in certain disease populations.

Incidental and secondary findings
There are important ethical implications associated with the 
clinical application of ES and GS, particularly in children. ES and 
GS frequently identify incidental or secondary findings—genetic 
variants of potential importance to the child or family that are 
unrelated to the diseases for which the testing is performed.78 
Reporting incidental findings is controversial and has resulted in 
sometimes- conflicting policy recommendations.79 Some groups 
suggest returning pathogenic variants from a list of medically 
actionable genes with findings currently lacking an available 
therapeutic intervention left unreported. Others recommend 
offering pathogenic findings in treatable and untreatable disor-
ders as well as carrier status for recessive diseases.80 This discus-
sion is particularly relevant in the paediatric population as 
they are not considered legally competent when screened but 
will gain competence as they grow older.81 The fact that many 
adults choose not to have genetic testing when offered82 raises 
important concerns regarding future autonomy and privacy 
protection; however, an in- depth analysis of these issues is 
beyond the scope of this review.

The large number of variants that result from ES and GS 
represents a significant challenge to their use in routine clin-
ical practice. Both commercial and laboratory- developed infor-
matics tools have been developed that filter out all but a few 
hundred variants for manual review. Still, this can result in a 
time- consuming task.83 Informatics tools that ingest phenotypic 
information to generate a candidate gene list are appearing.84 
Combining tools that filter variants with one that proposes a 
gene list should significantly reduce analysis time.

ConClusIons AnD fuTure DIreCTIons
In this review, we have investigated the evidence for GS as a 
first- line tool for the diagnosis of rare and undiagnosed genetic 
diseases. GS provides high diagnostic rates across a variety of 
molecular aetiologies and can reduce the length of the diag-
nostic odyssey—both of which have positive downstream 
health- economic benefits. Receiving a molecular diagnosis also 
has profound psychosocial impact on patients as well as their 
families as they can give a name to the disease and connect the 
family with other similarly affected patients.85 Finally, receiving 
a definitive diagnosis enables the use of disease- specific genetic 
counselling services that can influence both family planning and, 
in some cases, palliative care.86
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The use of GS as a first- tier test rather than a ‘last resort’ would 
be beneficial to many populations, especially critically ill neonates 
where a rapid diagnosis is essential. Future research should explore 
the diseases and presentations in which rapid GS has the most 
diagnostic effectiveness and is most likely to affect acute disease 
management. There are far fewer publications using NGS- based 
diagnostic tools in the adult population. Adult patients seeking 
diagnosis of a suspected genetic disease presents increased diag-
nostic challenges because additional factors, such as ageing and 
environmental exposures, require critical consideration.87

Beyond rare Mendelian diseases, GS provides opportunities 
going forward to identify mosaicism,88 genetic disease modifiers,89 
pharmacogenomic variants,90 uniparental disomy,91 polygenic risk 
scores,92 infectious diseases,93 blood groups,94 HLA genotypes95 
and ancestry,96 many of which cannot be determined from ES.

Finally, the diagnostic yield of GS is expected to increase with 
the development of novel bioinformatics methods and with the 
growing detection and understanding of disease- causing variants 
in non- coding regions. In paediatric patients with rare and undi-
agnosed diseases, clinical implementation of GS as a first- line test 
has the potential to increase diagnostic yields, reduce the time to 
diagnosis and positively impact the clinical care pathway.
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