











Genotype-phenotype correlations

Figure 1

Mutation distribution in CSA. (A) Distribution of missense mutations across the CSA protein. Mutations identified in this study are indicated

below the protein with new mutations indicated in bold. Other previously identified missense mutations are indicated above the protein; 1-7 indicate

the seven WD40 domains of the CSA protein according to the reference sequence NP_000073.1. (B) Missense mutations associated with different CS
phenotypes mapped onto the three-dimensional CSA protein structure (RCSB PDB, DOI: 10.2210/pdb4a’ 1/pdb11 12) Yellow, UVSS; orange, CS type I; violet,
CS type II; dark grey, CS type lll. (C) Distribution of truncation mutations. Mutations have been grouped in intervals of 40 aa and columns represent the
number of mutations for each group. The interval 0-40 includes mutations resulting in no transcript (asterisks). Black: new mutations identified in this study;
grey: previously reported mutations also present in this study; white: other previously reported mutations.

and 11 (r.844_1122del; p.Val282_Glu374del in CS9IAF) and/or
the deletion of exon 10 (r.844_1041del; p.Val282_Glu347del in
CSSIAF and CS9IAF). Indeed, this mutation is predicted to alter
an exonic splicing enhancer (ESE) site, and potentially alter the
splicing as indicated by the bioinformatics tool HSE

Finally, at the genomic level we identified three new CSA
genetic variants located in splice donor sites (c.481+1G>C,
¢.1041+1G>Tand c.1122+1delG) most probably affecting
splicing. The resulting transcripts could not be identified because
of the unavailability of RNA samples. However, HSF analysis
indicated potential splicing alterations for the three mutations
as well as the activation of an intronic cryptic donor site for the
latest two.

CSB mutations

In CSB, we identified 73 pathogenic genetic variants of which 46
were previously unreported. Ten of the mutations were missense,
9 in-frame deletions (2 small and 7 large), 5 null mutations
leading to unexpressed transcripts and the rest being trunca-
tions resulting from stop (16), frameshifts (20) or splice muta-
tions (13). The 10 missense mutations are indicated in figure 3A,
below the CSB linear structure, with the 6 new mutations indi-
cated in bold. Other previously reported missense mutations are
shown above the CSB linear structure.

All missense mutations are predicted to be pathogenic (see
online supplementary table 1). We have confirmed the defec-
tive function of several of them by transducing a CS-B cell line,
CS10LO, with virus containing the mutant ¢cDNA (figure 2C,
D). Similar to the CSA data, wild-type CSB almost completely
restored RRS to the recipient UV-irradiated CS10LO cell line,
whereas with the six mutant cDNAs tested, RRS remained close
to the level of the untransduced cells (figure 2C). The infection
efficiency was similar for all transductions (figure 2D).

The distribution of CSB truncation mutations is presented in
figure 3B (lower panel). Some general conclusions may be drawn
from the present in-depth investigation together with previous
studies (data up to 2010 reviewed by Laugel et al,* and since
2011 listed in online supplementary table 2). With two excep-
tions, all of the CSB missense mutations are located either in

or very close to the seven helicase domains, in particular in
domains I and III (four mutations each) and domains IV-VI (9
mutations within 110 amino acids), emphasising the crucial role
of these domains in CSB function. These helicase domains are
involved in the DNA-dependent ATPase activity of the protein
and confirm that this activity is vital for preventing the features
of CS. The N-terminal and C-terminal extensions are likely to
be much more amenable to genetic variants that do not affect
function, despite the demonstration that the C-terminal part of
the protein is essential for a normal cellular response to UV irra-
diation.” '® This may imply that the structure of the C-terminal
ubiquitin—binding domain needs to be intact, but the precise
amino acid sequence is less crucial. Again, as might be antici-
pated, the truncation mutations are spread rather evenly across
the protein (figure 3B).

Interestingly, the ¢.1834C>Tand ¢.2143G>Tresult in
p-Arg612* and p.Gly715%, respectively, and their transcript
was detected only in homozygous or hemizygous patients. This
transcript must be poorly expressed, presumably because of
nonsense-mediated decay, because in compound heterozygotes
only the transcript resulting from the second allele was detected.

Furthermore, several genetic variants affect ERCC6/CSB
splicing giving rise to either truncations or in-frame deletions.
In particular, 10 mutations map at the canonical splice sites of
different exons, four are located inside introns (c.1993-5A>G;
c.2599-26A>G, c.1685+6T>G, c.543 +4 delA) and three inside
exons (c.466C>T, ¢.526C>Tand ¢.2092 2093insG). All the
exonic changes are likely to alter the splicing by creating novel
exon-splicing enhancer (ESE in the case of ¢.466C>T) or exon-
splicing silencer (ESS for ¢.526C>Tand ¢.2092_2093insG) sites
according to HSF prediction.

Recurring pathogenic genetic variants

Mutations found in several patients are indicative of either
founder effects or mutation hotspots. Although haplotype anal-
ysis would be required to distinguish definitively between these
two alternatives, as a first approximation, we assume that if the
pathogenic genetic variant is only found in a relatively limited
geographical location, it is more likely to be a founder effect. In
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Figure 2 Lack of complementation with CSA and CSB mutations. Wild-type and various mutant ERCC8/CSA (A, B) or ERCC6/CSB (C, D) cDNAs were

ectopically expressed by recombinant lentivirus infection in fibroblasts derived from a patient with CS-A, CS9LO or patient with CS-B, CS10LO, respectively.
(A, C) Recovery of RNA synthesis activities were detected 12 hours after UV irradiation (filled bars, 12)/m? UVC irradiation; open bars, no UV irradiation),
and the value was normalised to activity measurement in non-irradiated cells. (B, D) Viral infection efficiency was confirmed by immunofluorescent staining
of V5-tagged wild-type and mutant CSA or CSB proteins, and calculated as the number of Alexa 488-positive cells using a semi-automatic VTI system. w/o,
without virus infection; w.t., wild type. Results from at least three independent experiments. Error bars indicate SD.

ERCC8/CSA, we found a complex rearrangement involving exon
4 in 8 Japanese patients, also previously reported in four Japa-
nese patients by Ren et al,*" strongly indicating a founder muta-
tion. Moreover, the ¢.966C>A mutation found in two patients
of our cohort (CSIIAF, CSSIAF) was also previously described in
three cases (CS2IAF, CS886VI/CS887VI).” Since all the patients
are of Arabic origin, although from different countries (Israel or
Lebanon), this is also most likely a founder mutation.

Nine CSB/ERCC6 pathogenic genetic variants occur in three
or more patients (table 3). The most common of these multiple
occurrences are ¢.2203C>T, ¢.2167C>Tand c.466C>T, respec-
tively found in 12, 11 and 7 patients. Whereas c.2167C>Tand
c.466C>T are found almost exclusively in the UK patients and
may result from founder effects, ¢.2203C>T is found in individ-
uals from several different countries and likely results from inde-
pendent mutations. Interestingly, the C>T mutations in table 3
that are more likely to result from a founder mutation are at
CpA sites, whereas those more likely to result from independent
mutations are at CpG sites. CpG sites are known to be muta-
tional hotspots in the human genome.*!

Relationship to clinical features

No obvious genotype-phenotype correlation was identified
in the patients with CS-A reported in previous investigations
(45 cases from 33 families). With the present study, we have
expanded the cohort of patients with CS-A by describing 39
new cases, the majority of which are homozygotes. Focusing
on the homozygous patients with CS-A (33 from 24 fami-
lies in the literature and 30 from 30 families in our cohort,
excluding the 9 Japanese cases with a recurrent mutation),
missense mutations appear to be more frequently associated
with mild phenotypes than protein-truncating mutations. The
observation that the missense alteration p.Trp361Cys, which
interferes with transcription-coupled NER but not with the
oxidative stress response, is associated with UVSS, a rare
disorder characterised only by cutaneous photosensitivity,*’
strongly supports the notion that the severity of the clinical
features is related to the effects of the mutation on the addi-
tional roles of CSA outside transcription-coupled NER, which
include oxidative damage response, mitochondrial function
maintenance and ribosomal DNA transcription.
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Figure 3  Mutation distribution in CSB. (A) Distribution of missense mutations across the CSB protein. Mutations identified in this study are indicated
below the protein with new mutations indicated in bold. Other missense mutations reported as pathogenic are indicated above the protein, with those
now classified as polymorphic variants in parenthesis. Different domains of the protein are indicated: A, acidic domain; N, nuclear localisation domain; I, IA,
[I-VI1, helicase-like domains; U, ubiquitin-binding domain. (B) Distribution of truncation mutations. Mutations have been grouped in intervals of 100 aa and
columns represent the number of mutations number for each group. The interval 0-100 includes mutations resulting in no transcript (asterisks). Black: new
mutations identified in this study; grey: previously reported mutations also present in this study; white: other previously reported mutations.

Previous analysis of mutations in patients with CS-B (51
homozygous cases from 29 families/kindreds and 37 compound
heterozygotes from 32 families) have not identified any clear
correlation between the site or the nature of the mutations with
the type and severity of the clinical features,* ** although some
more subtle relationships have been suggested. Several years ago,
Horibata et al suggested that CSB truncations generating no func-
tional protein resulted in the mild phenotype of UVSS, whereas
more C-terminal truncations might generate inactive protein that
could interfere with other processes, thereby resulting in more
severe phenotypes.”” Weiner and colleagues showed that the
human ERCC6/CSB gene contains a PiggyBac transposon inser-
tion in intron 5*** (see table 2 and figure 3). They showed that
translation of ERCC6/CSB resulted in bona fide CSB protein,
but also a CSB-PiggyBac fusion protein. Truncation mutations
upstream of intron 5 would generate neither protein, whereas
those downstream would generate only the CSB-PiggyBac
fusion, which was proposed to have deleterious effects.** We
have analysed the severity of the clinical features in our patient
cohort to see if they are in accord with these suggestions. In
eight patients homozygous for truncations in the first five exons,
six could be categorised as type I, and one as type II. No infor-
mation is available for one patient. In contrast, in 28 patients
homozygous for truncations downstream of exon 5, the numbers
assigned to types I, Il and III are 5, 12 and 3, respectively. There
thus appears to be a tendency to more severe phenotypes (type
II) associated with downstream truncations, although this does
not seem to be an absolute correlation. Patients with trunca-
tions upstream of the Piggy-Bac insertion but severe clinical
features have been reported previously.* Furthermore, of the
four patients homozygous for the mutation Asp1355Valfs*32,

two were classified as type I and two as type III (see table 2).
Altogether, these observations indicate that other factors, apart
from the site of mutation, contribute to the severity of the patho-
logical phenotype.

In an earlier analysis, Laugel suggested that type II features
were more prevalent in patients with CS-B than in patients with
CS-A.° This is supported by our current data. The distributions
for those patients for whom we have clinical data for types I,
IT and III are 67%, 21% and 12.5% for CS-A (21 patients) and
35%, 56% and 10% for CS-B (60 patients), respectively. The
individual clinical features for which we have information are
summarised in table 4, where they are also compared, where
possible, with data from a recent analysis of 102 CS individuals
by Wilson et al.* Within our own cohort, there are few differ-
ences between patients with CS-A and CS-B, with the possible
exceptions of cataracts, low birth weight and microphthalmia,
which are more prevalent in patients with CS-B. The incidence
of several features appears to be higher in our cohort than in
that studied by Wilson et al (see table 4). Two possible explana-
tions for this are: (1) they could represent genuine differences
between the two cohorts; (2) the analytical clinical criteria may
differ between the two studies. Of the patients subjected to
molecular analysis in* the ratio of CS-B to CS-A cases is very
similar to that reported here.

In a recent survey of patients with CS in Japan, nearly all of
them (41/47) were categorised clinically as type 1.> Unfortu-
nately, this survey did not include molecular analyses. However,
our data strongly suggest that there is a ERCC8/CSA founder
mutation in Japanese patients with CS. We may extrapolate this
to suggest that many of the patients analysed in the survey by
Kubota et al are likely also to have carried this founder mutation.
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Table 3 ERCC6/CSB mutations identified in three or more patients
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Table 4 Summary of clinical features

Wilson et
Clinical feature CS-A* CS-B* alt Kubota et al$
Growth failure 28/29 (97) 66/67 (99) 100 36/36 (100)
Low birth weight 7125 (28) 24/48 (50) 0
Cachexia 26/27 (96) 55/56 (98) 38/39 (97)
Mental retardation 27/27 (100) 55/57 (96) 41/41 (100)
Microcephaly 26/27 (96) 55/57 (96) 100
Cataracts 12122 (54) 34/49 (69) 48 20/31 (65)
Microphthalmia 2116 (12.5) 13/33 (39)
Retinal degeneration 10/18 (55) 16/30 (53) 43 25/28 (89)
Deafness 15/21 (71) 26/43 (60) 44 28/31 (90)
Photosensitivity 17123 (74) 38/50 (76) 47 34/37 (92)
Dental anomalies 11/14 (78) 17/25 (68) 46 18/25 (72)

CSA/CSB mutations 39/39 (100) 85/85 (100)  39/40 (98)§

*Number of cases with indicated feature/total number for whom we have relevant
information (% in parentheses).

tData, expressed as %, from Wilson et a/.*

$Data from Kubota et a/.?

§Molecular analysis only available from 40 families—39 were mutated in CSA or CSB, 1 was
mutated in XPD.

The data present a summary from tables 1 and 2.

As mentioned above, patients with CS-A are more likely to fall
into the type I category. The features of the 41 Japanese patients
with type I CS are also included in table 4. Deafness, photo-
sensitivity and retinal degeneration appear to be higher in the
Japanese cohort. This may be partially explained by the average
age of the Japanese patients (17.5 years), which appears to be
significantly higher than in our cohort. Deafness and retinal
degeneration are progressive and therefore more likely to occur
in older patients.

As also reported in earlier studies, clinical photosensitivity was
found in the majority of our patients, even those with skin types
IV and V on the Fitzpatrick Skin Type Scale (see tables 1, 2 and
4). Nevertheless, as in other reports,*” we found no skin cancers
in any of our patients. This may be explained by a recent finding
that CS fibroblasts are not hypermutable by UV radiation.*

In conclusion, our analyses show that the human mutation
spectrum of the CS genes is not yet saturated, but missense muta-
tions are largely confined to a few relatively short regions. There
are no definitive correlations between genotype and phenotype,
but truncation mutations C-terminal to the PiggyBac insertion
in ERCC6/CSB are more likely to confer a severe clinical pheno-
type than mutations N-terminal to this insertion or mutations in
ERCCS8/CSA.
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