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AbsTrACT
background cockayne syndrome (cS) is a rare, 
autosomal recessive multisystem disorder characterised 
by prenatal or postnatal growth failure, progressive 
neurological dysfunction, ocular and skeletal 
abnormalities and premature ageing. about half of 
the patients with symptoms diagnostic for cS show 
cutaneous photosensitivity and an abnormal cellular 
response to UV light due to mutations in either the 
ERCC8/CSA or ERCC6/CSB gene. Studies performed thus 
far have failed to delineate clear genotype-phenotype 
relationships. We have carried out a four-centre clinical, 
molecular and cellular analysis of 124 patients with cS.
Methods and results We assigned 39 patients 
to the ERCC8/CSA and 85 to the ERCC6/CSB genes. 
Most of the genetic variants were truncations. the 
missense variants were distributed non-randomly 
with concentrations in relatively short regions of the 
respective proteins. Our analyses revealed several 
hotspots and founder mutations in ERCC6/CSB. although 
no unequivocal genotype-phenotype relationships could 
be made, patients were more likely to have severe 
clinical features if the mutation was downstream of 
the PiggyBac insertion in intron 5 of ERCC6/CSB than 
if it was upstream. also a higher proportion of severely 
affected patients was found with mutations in ERCC6/
CSB than in ERCC8/CSA.
Conclusion By identifying >70 novel homozygous 
or compound heterozygous genetic variants in 124 
patients with cS with different disease severity and 
ethnic backgrounds, we considerably broaden the CSA 
and CSB mutation spectrum responsible for cS. Besides 
providing information relevant for diagnosis of and 
genetic counselling for this devastating disorder, this 
study improves the definition of the puzzling genotype-
phenotype relationships in patients with cS.

InTroduCTIon 
Cockayne syndrome (CS) (OMIM #216400 and 
#133540) is a rare autosomal recessive disorder 
characterised by severe developmental delay, mental 
retardation, microcephaly, cachexia and a variety of 
other features, which may include cataracts, retinal 
degeneration, sensorineural hearing loss, dental 
anomalies and photosensitivity.1–5 There is a large 
variation in severity of the disorder, which has led 
to categorisation into three types: type I is asso-
ciated with normal features at birth, followed by 

the onset of clinical features starting in the first or 
second year of life. The clinical features are progres-
sive, usually leading to death in the second or third 
decade of life. Type II represents a more severe 
form of the disorder with features present at birth 
or prenatally. This group typically does not survive 
beyond the first decade. Type III represents a group 
with less severe features than those in type I. They 
may survive for several decades. Cerebro-oculo-fa-
cio-skeletal syndrome has also been used to describe 
a very severe form of the disorder. This categorisa-
tion is quite convenient for a rough description of 
the patients’ severity,2 but in reality there is prob-
ably a continuum of severity of features.6

At the cellular level, a robust diagnostic test 
is provided by the response of RNA synthesis to 
ultraviolet (UV) irradiation of cultured fibroblasts.7 
Whereas RNA synthesis and subsequently DNA 
synthesis recover rapidly following UV irradiation 
of normal fibroblasts, this recovery is much delayed 
or absent in CS fibroblasts.8 Nearly all cases in 
which there is a clear clinical diagnosis of CS are 
defective in this test, and in almost all patients 
diagnosed by this test, the causative mutation lies 
in one of two genes, ERCC6/CSB (OMIM 609413) 
or ERCC8/CSA (OMIM 609412). The encoded 
proteins, CSB and CSA are respectively a DNA-de-
pendent ATPase9 10 and a WD40 protein compo-
nent of a large cullin4-mediated E3-ubiquitin ligase 
complex.11 12 The ATPase activity of the 1493 aa 
CSB protein falls into the SWI2/SNF family and is 
associated with seven so-called helicase domains, 
even though CSB does not have helicase activity. 
Towards the C-terminus there is a ubiquitin-binding 
domain.13 CSB can be modified by phosphoryla-
tion, ubiquitylation on lys99114 and SUMOylation, 
most likely on lys205.15 16 The 396 aa CSA protein 
comprises a seven-bladed WD40 propeller attached 
to the DDB1 protein via a helix-loop-helix motif at 
the N-terminus.12

The best characterised role of the CS proteins is 
in the transcription-coupled branch of nucleotide 
excision repair (NER) of UV-induced DNA damage. 
This damage, when in the transcribed strand of active 
genes, results in stalling of RNA polymerase II. The 
CS proteins are thought to modify the chromatin in 
the region of the stalled polymerase, enabling the 
polymerase to back-track and then to assist in the 
recruitment of TFIIH and other proteins involved 
in subsequent steps of NER.17 18 This role of the CS 
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proteins readily explains the failure of RNA synthesis to recover 
following UV irradiation of CS cells and the photosensitivity of 
the patients. However, it is not so easy to reconcile with many 
of the other features of CS. Indeed a few patients, with so-called 
UV-sensitive syndrome (UVSS), have been identified with muta-
tions in CSA, CSB or a recently identified gene UVSSA.19–23 
Cells from these individuals show the same defective recovery 
of RNA synthesis as CS cells but the patients display only the 
sun-sensitivity and not the broad spectrum of other features of 
CS such as neurodegeneration and premature ageing.24 These 
observations suggest that the CS proteins have other functions as 
well, and evidence has been provided for several other roles,5 25 
including the repair of oxidative damage in DNA26–29 and roles 
in mitochondrial DNA metabolism.30–33 A recent elegant study, 
using both whole brains and cultured cells, identified a crucial 
role for the CS proteins in expression of neuronal genes and 
thereby in neuronal differentiation.34 Similar conclusions have 
been reached from a study in which induced pluripotent stem 
cell-derived neuronal cells from patients with CS had reduced 
transcription of many neural-specific genes.35 This role of CS 
proteins in neuronal differentiation could account for some of 
the developmental defects found in patients with CS.

In this manuscript, we have gained further insight into the 
genetics and molecular basis of CS by analysing the clinical 
features and mutations in 124 patients with CS, combining 
data gathered over several decades from four centres, in Stras-
bourg (France); Pavia (Italy); Nagasaki and Nagoya (Japan) and 
Brighton (UK). Our results have identified many novel genetic 
variants and provide insights into previously unreported geno-
type-phenotype relationships and their relevance for clinical 
diagnosis.

MATerIAls And MeThods
Samples were obtained as skin biopsies, fibroblast cultures, blood 
or DNA extracted from blood, all with appropriate informed 
consent.

Fibroblast cultures and lymphoblastoid cell lines were estab-
lished from skin biopsies and blood lymphocytes, respectively, 
and grown using standard procedures. In the Pavia, Nagasaki 
and Brighton labs, cells were first screened on a diagnostic 
basis using the post-UV recovery of RNA synthesis (RRS) test 
using liquid scintillation counting,7 36 autoradiography37 or 
a fluorescence assay.7 36 Several cell samples were also anal-
ysed for hypersensitivity to the killing effects of UV exposure 
and levels of UV-induced DNA repair synthesis (UDS). Only 
cells displaying a defective RRS were characterised further 
to identify the mutation in the defective CS gene. In Pavia, 
cell fusion with known CS-A or CS-B cells using polyethylene 
glycol was used to establish complementation group.37 In 
Japan, complementation group was established by transduction 
with lentivirus expressing either ERCC6/CSB or ERCC8/CSA 
cDNA.38 Finally, the appropriate gene was sequenced using 
genomic DNA (ERCC6 RefSeq NG_009442.1; ERCC8 RefSeq 
NG_009289.1) and/or cDNA (ERCC6 NM_000124.3; ERCC8 
RefSeq NM_000082.3). In Strasbourg, RRS and molecular 
screening (genomic and/or cDNA sequence) were performed 
concomitantly. Genomic sequencing was performed either by 
Sanger or next-generation sequencing.39 Mutation nomencla-
ture follows the format indicated at http:// varnomen. hgvs. org/. 
Nucleotide numbering of coding sequences starts with the A 
of the ATG translation initiation site as nucleotide 1. When 
appropriate, we consulted the Human Splicing Finder (HSF), 
a tool to predict the effects of mutations on splicing signals or 

to identify splicing motifs in any human sequence (http://www. 
umd. be/ HSF3/ HSF. shtml).

Clinical examination was carried out by VL and colleagues 
for all patients analysed in Strasbourg. Descriptions of clinical 
features at the other centres were dependent on clinical notes 
supplied by the referring clinicians.

resulTs And dIsCussIon
Out of the 124 patients identified as having a specific defect 
in RRS, 39 were mutated in ERCC8/CSA (table 1) and 85 in 
ERCC6/CSB (table 2), representing 32% and 68% of the popula-
tion, respectively. Homozygous patients (30 CS-A and 43 CS-B) 
are listed first in order of mutation position. Compound hetero-
zygotes (9 CS-A and 42 CS-B) are listed subsequently in order 
of the most 5’ of the two genetic variants. Tables 1 and 2 also 
summarise as much clinical data as we have available, including 
previous reports on 13 CS-A and 5 CS-B cases.

CSA mutations
We have identified 32 pathogenic genetic variants in CSA, of 
which 25 have not been reported previously. Six were missense 
mutations, all but one previously unreported, and one a small 
in-frame indel. Missense mutations are indicated below the CSA 
linear structure (figure 1A) with the previously unreported alter-
ations indicated in bold. CSA comprises a seven-bladed WD40 
propeller attached to the DDB1 protein via a helix-loop-helix 
motif at the N-terminus.12 All the newly identified missense 
mutations affect residues that are conserved among CSA ortho-
logs and are located in WD40 repeats. Together with previously 
reported mutations, indicated above the CSA linear structure, 
there is a particularly high concentration of missense mutations 
around aa 200 (4 mutations within 12 aa) and aa 270 (3 muta-
tions within 7 aa). All the 13 missense mutations are located in 
the blades of the beta propeller structure, with 8 of them clus-
tered in blades 4 and 5 (figure 1B), and are likely to disrupt the 
structure of the protein.12

All the missense mutations are predicted to be pathogenic 
using Polyphen, MutPred2 and SIFT (see online supplemen-
tary table 1). We have confirmed their defective function by 
transducing a CS-A cell line, CS9LO, with virus containing the 
mutant cDNA (figure 2A, B). Wild-type CSA almost completely 
restored RRS to the recipient UV-irradiated CS9LO cell line. 
In contrast, when the cells were transduced with any of the six 
mutant cDNAs, RRS remained close to the level of the untrans-
duced cells (figure 2A). The infection efficiency was similar for 
all transductions (figure 2B).

We have identified 19 protein-truncating genetic variants, of 
which 14 are new, that include frameshift, splicing and premature 
stop mutations. They are predicted to result in 18 distinct truncated 
proteins (12 new), because we found that the Thr134Leufs*13 
truncation (due to exon 5 deletion, ie, r.400_481del) is caused 
by two distinct mutations affecting either the splice acceptor site 
of intron 4 (c.400-2A>G in CS261ST) or the splice donor site 
of intron 5 (c.479C>T in CS133NY). In addition, two muta-
tions resulting in large in-frame deletions (p.Val282_Gln347del, 
Val282_Glu374del and p.Val27_Arg92del) are respectively 
predicted from c.966C>A and a previously unreported rear-
rangement involving part of intron 2 and exon 3, which results 
in a transcript lacking exons 2 and 3 (patient CS1LE). Interest-
ingly, the genomic mutation c.966C>A (in exon 10), previously 
described as resulting in a single, full-length normal-spliced tran-
script (r.966c>a, p.Tyr322*),39 was shown to generate also two 
abnormally spliced transcripts carrying the deletion of exons 10 
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Genotype-phenotype correlations
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Genotype-phenotype correlations
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and 11 (r.844_1122del; p.Val282_Glu374del in CS9IAF) and/or 
the deletion of exon 10 (r.844_1041del; p.Val282_Glu347del in 
CS5IAF and CS9IAF). Indeed, this mutation is predicted to alter 
an exonic splicing enhancer (ESE) site, and potentially alter the 
splicing as indicated by the bioinformatics tool HSF.

Finally, at the genomic level we identified three new CSA 
genetic variants located in splice donor sites (c.481+1G>C, 
c.1041+1G>T and c.1122+1 delG) most probably affecting 
splicing. The resulting transcripts could not be identified because 
of the unavailability of RNA samples. However, HSF analysis 
indicated potential splicing alterations for the three mutations 
as well as the activation of an intronic cryptic donor site for the 
latest two.

CSB mutations
In CSB, we identified 73 pathogenic genetic variants of which 46 
were previously unreported. Ten of the mutations were missense, 
9 in-frame deletions (2 small and 7 large), 5 null mutations 
leading to unexpressed transcripts and the rest being trunca-
tions resulting from stop (16), frameshifts (20) or splice muta-
tions (13). The 10 missense mutations are indicated in figure 3A, 
below the CSB linear structure, with the 6 new mutations indi-
cated in bold. Other previously reported missense mutations are 
shown above the CSB linear structure.

All missense mutations are predicted to be pathogenic (see 
online supplementary table 1). We have confirmed the defec-
tive function of several of them by transducing a CS-B cell line, 
CS10LO, with virus containing the mutant cDNA (figure 2C, 
D). Similar to the CSA data, wild-type CSB almost completely 
restored RRS to the recipient UV-irradiated CS10LO cell line, 
whereas with the six mutant cDNAs tested, RRS remained close 
to the level of the untransduced cells (figure 2C). The infection 
efficiency was similar for all transductions (figure 2D).

The distribution of CSB truncation mutations is presented in 
figure 3B (lower panel). Some general conclusions may be drawn 
from the present in-depth investigation together with previous 
studies (data up to 2010 reviewed by Laugel et al,39 and since 
2011 listed in online supplementary table 2). With two excep-
tions, all of the CSB missense mutations are located either in 

or very close to the seven helicase domains, in particular in 
domains I and III (four mutations each) and domains IV–VI (9 
mutations within 110 amino acids), emphasising the crucial role 
of these domains in CSB function. These helicase domains are 
involved in the DNA-dependent ATPase activity of the protein 
and confirm that this activity is vital for preventing the features 
of CS. The N-terminal and C-terminal extensions are likely to 
be much more amenable to genetic variants that do not affect 
function, despite the demonstration that the C-terminal part of 
the protein is essential for a normal cellular response to UV irra-
diation.13 16 This may imply that the structure of the C-terminal 
ubiquitin—binding domain needs to be intact, but the precise 
amino acid sequence is less crucial. Again, as might be antici-
pated, the truncation mutations are spread rather evenly across 
the protein (figure 3B).

Interestingly, the c.1834C>T and c.2143G>T result in 
p.Arg612* and p.Gly715*, respectively, and their transcript 
was detected only in homozygous or hemizygous patients. This 
transcript must be poorly expressed, presumably because of 
nonsense-mediated decay, because in compound heterozygotes 
only the transcript resulting from the second allele was detected.

Furthermore, several genetic variants affect ERCC6/CSB 
splicing giving rise to either truncations or in-frame deletions. 
In particular, 10 mutations map at the canonical splice sites of 
different exons, four are located inside introns (c.1993-5A>G; 
c.2599-26A>G, c.1685+6T>G, c.543+4 delA) and three inside 
exons (c.466C>T, c.526C>T and c.2092_2093insG). All the 
exonic changes are likely to alter the splicing by creating novel 
exon-splicing enhancer (ESE in the case of c.466C>T) or exon-
splicing silencer (ESS for c.526C>T and c.2092_2093insG) sites 
according to HSF prediction.

recurring pathogenic genetic variants
Mutations found in several patients are indicative of either 
founder effects or mutation hotspots. Although haplotype anal-
ysis would be required to distinguish definitively between these 
two alternatives, as a first approximation, we assume that if the 
pathogenic genetic variant is only found in a relatively limited 
geographical location, it is more likely to be a founder effect. In 

Figure 1 Mutation distribution in cSa. (a) Distribution of missense mutations across the cSa protein. Mutations identified in this study are indicated 
below the protein with new mutations indicated in bold. Other previously identified missense mutations are indicated above the protein; 1–7 indicate 
the seven WD40 domains of the cSa protein according to the reference sequence nP_000073.1. (B) Missense mutations associated with different cS 
phenotypes mapped onto the three-dimensional cSa protein structure (rcSB PDB, DOi: 10.2210/pdb4a11/pdb11 12). Yellow, UVSS; orange, cS type i; violet, 
cS type ii; dark grey, cS type iii. (c) Distribution of truncation mutations. Mutations have been grouped in intervals of 40 aa and columns represent the 
number of mutations for each group. the interval 0–40 includes mutations resulting in no transcript (asterisks). Black: new mutations identified in this study; 
grey: previously reported mutations also present in this study; white: other previously reported mutations.
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ERCC8/CSA, we found a complex rearrangement involving exon 
4 in 8 Japanese patients, also previously reported in four Japa-
nese patients by Ren et al,40 strongly indicating a founder muta-
tion. Moreover, the c.966C>A mutation found in two patients 
of our cohort (CS9IAF, CS5IAF) was also previously described in 
three cases (CS2IAF, CS886VI/CS887VI).39 Since all the patients 
are of Arabic origin, although from different countries (Israel or 
Lebanon), this is also most likely a founder mutation.

Nine CSB/ERCC6 pathogenic genetic variants occur in three 
or more patients (table 3). The most common of these multiple 
occurrences are c.2203C>T, c.2167C>T and c.466C>T, respec-
tively found in 12, 11 and 7 patients. Whereas c.2167C>T and 
c.466C>T are found almost exclusively in the UK patients and 
may result from founder effects, c.2203C>T is found in individ-
uals from several different countries and likely results from inde-
pendent mutations. Interestingly, the C>T mutations in table 3 
that are more likely to result from a founder mutation are at 
CpA sites, whereas those more likely to result from independent 
mutations are at CpG sites. CpG sites are known to be muta-
tional hotspots in the human genome.41

relationship to clinical features
No obvious genotype-phenotype correlation was identified 
in the patients with CS-A reported in previous investigations 
(45 cases from 33 families). With the present study, we have 
expanded the cohort of patients with CS-A by describing 39 
new cases, the majority of which are homozygotes. Focusing 
on the homozygous patients with CS-A (33 from 24 fami-
lies in the literature and 30 from 30 families in our cohort, 
excluding the 9 Japanese cases with a recurrent mutation), 
missense mutations appear to be more frequently associated 
with mild phenotypes than protein-truncating mutations. The 
observation that the missense alteration p.Trp361Cys, which 
interferes with transcription-coupled NER but not with the 
oxidative stress response, is associated with UVSS, a rare 
disorder characterised only by cutaneous photosensitivity,20 
strongly supports the notion that the severity of the clinical 
features is related to the effects of the mutation on the addi-
tional roles of CSA outside transcription-coupled NER, which 
include oxidative damage response, mitochondrial function 
maintenance and ribosomal DNA transcription.

Figure 2 lack of complementation with cSa and cSB mutations. Wild-type and various mutant ERCC8/CSA (a, B) or ERCC6/CSB (c, D) cDnas were 
ectopically expressed by recombinant lentivirus infection in fibroblasts derived from a patient with cS-a, cS9lO or patient with cS-B, cS10lO, respectively. 
(a, c) recovery of rna synthesis activities were detected 12 hours after UV irradiation (filled bars, 12 J/m2 UVc irradiation; open bars, no UV irradiation), 
and the value was normalised to activity measurement in non-irradiated cells. (B, D) Viral infection efficiency was confirmed by immunofluorescent staining 
of V5-tagged wild-type and mutant cSa or cSB proteins, and calculated as the number of alexa 488-positive cells using a semi-automatic Vti system. w/o, 
without virus infection; w.t., wild type. results from at least three independent experiments. error bars indicate SD.
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Previous analysis of mutations in patients with CS-B (51 
homozygous cases from 29 families/kindreds and 37 compound 
heterozygotes from 32 families) have not identified any clear 
correlation between the site or the nature of the mutations with 
the type and severity of the clinical features,42 43 although some 
more subtle relationships have been suggested. Several years ago, 
Horibata et al suggested that CSB truncations generating no func-
tional protein resulted in the mild phenotype of UVSS, whereas 
more C-terminal truncations might generate inactive protein that 
could interfere with other processes, thereby resulting in more 
severe phenotypes.19 Weiner and colleagues showed that the 
human ERCC6/CSB gene contains a PiggyBac transposon inser-
tion in intron 544 45 (see table 2 and figure 3). They showed that 
translation of ERCC6/CSB resulted in bona fide CSB protein, 
but also a CSB-PiggyBac fusion protein. Truncation mutations 
upstream of intron 5 would generate neither protein, whereas 
those downstream would generate only the CSB-PiggyBac 
fusion, which was proposed to have deleterious effects.44 We 
have analysed the severity of the clinical features in our patient 
cohort to see if they are in accord with these suggestions. In 
eight patients homozygous for truncations in the first five exons, 
six could be categorised as type I, and one as type II. No infor-
mation is available for one patient. In contrast, in 28 patients 
homozygous for truncations downstream of exon 5, the numbers 
assigned to types I, II and III are 5, 12 and 3, respectively. There 
thus appears to be a tendency to more severe phenotypes (type 
II) associated with downstream truncations, although this does 
not seem to be an absolute correlation. Patients with trunca-
tions upstream of the Piggy-Bac insertion but severe clinical 
features have been reported previously.46 Furthermore, of the 
four patients homozygous for the mutation Asp1355Valfs*32, 

two were classified as type I and two as type III (see table 2). 
Altogether, these observations indicate that other factors, apart 
from the site of mutation, contribute to the severity of the patho-
logical phenotype.

In an earlier analysis, Laugel suggested that type II features 
were more prevalent in patients with CS-B than in patients with 
CS-A.6 This is supported by our current data. The distributions 
for those patients for whom we have clinical data for types I, 
II and III are 67%, 21% and 12.5% for CS-A (21 patients) and 
35%, 56% and 10% for CS-B (60 patients), respectively. The 
individual clinical features for which we have information are 
summarised in table 4, where they are also compared, where 
possible, with data from a recent analysis of 102 CS individuals 
by Wilson et al.4 Within our own cohort, there are few differ-
ences between patients with CS-A and CS-B, with the possible 
exceptions of cataracts, low birth weight and microphthalmia, 
which are more prevalent in patients with CS-B. The incidence 
of several features appears to be higher in our cohort than in 
that studied by Wilson et al (see table 4). Two possible explana-
tions for this are: (1) they could represent genuine differences 
between the two cohorts; (2) the analytical clinical criteria may 
differ between the two studies. Of the patients subjected to 
molecular analysis in4 the ratio of CS-B to CS-A cases is very 
similar to that reported here.

In a recent survey of patients with CS in Japan, nearly all of 
them (41/47) were categorised clinically as type I.3 Unfortu-
nately, this survey did not include molecular analyses. However, 
our data strongly suggest that there is a ERCC8/CSA founder 
mutation in Japanese patients with CS. We may extrapolate this 
to suggest that many of the patients analysed in the survey by 
Kubota et al are likely also to have carried this founder mutation. 

Figure 3 Mutation distribution in cSB. (a) Distribution of missense mutations across the cSB protein. Mutations identified in this study are indicated 
below the protein with new mutations indicated in bold. Other missense mutations reported as pathogenic are indicated above the protein, with those 
now classified as polymorphic variants in parenthesis. Different domains of the protein are indicated: a, acidic domain; n, nuclear localisation domain; i, ia, 
ii–Vi, helicase-like domains; U, ubiquitin-binding domain. (B) Distribution of truncation mutations. Mutations have been grouped in intervals of 100 aa and 
columns represent the number of mutations number for each group. the interval 0–100 includes mutations resulting in no transcript (asterisks). Black: new 
mutations identified in this study; grey: previously reported mutations also present in this study; white: other previously reported mutations.
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As mentioned above, patients with CS-A are more likely to fall 
into the type I category. The features of the 41 Japanese patients 
with type I CS are also included in table 4. Deafness, photo-
sensitivity and retinal degeneration appear to be higher in the 
Japanese cohort. This may be partially explained by the average 
age of the Japanese patients (17.5 years), which appears to be 
significantly higher than in our cohort. Deafness and retinal 
degeneration are progressive and therefore more likely to occur 
in older patients.

As also reported in earlier studies, clinical photosensitivity was 
found in the majority of our patients, even those with skin types 
IV and V on the Fitzpatrick Skin Type Scale (see tables 1, 2 and 
4). Nevertheless, as in other reports,47 we found no skin cancers 
in any of our patients. This may be explained by a recent finding 
that CS fibroblasts are not hypermutable by UV radiation.48

In conclusion, our analyses show that the human mutation 
spectrum of the CS genes is not yet saturated, but missense muta-
tions are largely confined to a few relatively short regions. There 
are no definitive correlations between genotype and phenotype, 
but truncation mutations C-terminal to the PiggyBac insertion 
in ERCC6/CSB are more likely to confer a severe clinical pheno-
type than mutations N-terminal to this insertion or mutations in 
ERCC8/CSA.
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Table 4 Summary of clinical features

Clinical feature Cs-A* Cs-b*
Wilson et 
al† Kubota et al‡

Growth failure 28/29 (97) 66/67 (99) 100 36/36 (100)

Low birth weight 7/25 (28) 24/48 (50) 0

Cachexia 26/27 (96) 55/56 (98) 38/39 (97)

Mental retardation 27/27 (100) 55/57 (96) 41/41 (100)

Microcephaly 26/27 (96) 55/57 (96) 100

Cataracts 12/22 (54) 34/49 (69) 48 20/31 (65)

Microphthalmia 2/16 (12.5) 13/33 (39)

Retinal degeneration 10/18 (55) 16/30 (53) 43 25/28 (89)

Deafness 15/21 (71) 26/43 (60) 44 28/31 (90)

Photosensitivity 17/23 (74) 38/50 (76) 47 34/37 (92)

Dental anomalies 11/14 (78) 17/25 (68) 46 18/25 (72)

CSA/CSB mutations 39/39 (100) 85/85 (100) 39/40 (98)§ 

*Number of cases with indicated feature/total number for whom we have relevant 
information (% in parentheses). 
†Data, expressed as %, from Wilson et al.4

‡Data from Kubota et al.3

§Molecular analysis only available from 40 families—39 were mutated in CSA or CSB, 1 was 
mutated in XPD.
The data present a summary from tables 1 and 2.
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