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ABSTRACT
The mammalian or mechanistic target of rapamycin
(mTOR) signalling pathway has multiple roles in
regulating physiology of the whole body and,
particularly, the brain. Deregulation of mTOR signalling
has been associated to various neurological conditions,
including epilepsy. Mutations in genes encoding
components of Gap Activity TOward Rags 1 (GATOR1)
(DEPDC5, NPRL2 and NPRL3), a complex involved in the
inhibition of the mTOR complex 1 (mTORC1), have been
recently implicated in the pathogenesis of a wide
spectrum of focal epilepsies (FEs), both lesional and
non-lesional. The involvement of DEPDC5, NPRL2 and
NRPL3 in about 10% of FEs is in contrast to the concept
that specific seizure semiology points to the main
involvement of a distinct brain area. The hypothesised
pathogenic mechanism underlying epilepsy is the loss of
the inhibitory function of GATOR1 towards mTORC1. The
identification of the correct therapeutic strategy in
patients with FE is challenging, especially in those with
refractory epilepsy and/or malformations of cortical
development (MCDs). In such cases, surgical excision of
the epileptogenic zone is a curative option, although the
long-term outcome is still undefined. The GATOR1/mTOR
signalling represents a promising therapeutic target in
FEs due to mutations in mTOR pathway genes, as in
tuberous sclerosis complex, another MCD-associated
epilepsy caused by mTOR signalling hyperactivation.

INTRODUCTION
Mammalian or mechanistic target of rapamycin
(mTOR) is an ubiquitously expressed serine/threo-
nine kinase regulating cell growth, proliferation,
metabolism, motility, death (through apoptosis and
autophagy), protein synthesis and transcription.1–3

Brain-specific roles include regulation of synaptic
plasticity and learning, neurogenesis and dendritic/
axonal morphology.4–7 The protein is a catalytic
component of two different complexes, mTORC1
(mTOR complex 1) and mTORC2 (mTOR
complex 2), in which mTOR associates with two
regulatory subunits: Raptor and Rictor, respectively
(figure 1).3 mTORC1 represents one of the most
important regulators of cell growth.1 The activity
of this complex is controlled by numerous factors
(insulin, growth factors, amino acids and oxidative
stress)8 9 acting through various protein signalling
pathways (figure 1).6 One of these pathways
recruits the GATOR (Gap Activity TOward Rags)
complex, involved in the amino acid sensing activ-
ity (figure 1).10 GATOR complex is composed of
two subcomplexes, GATOR1 and GATOR2, which
function as negative and positive regulators of
mTORC1, respectively (figure 1).10–13 The former

includes DEPDC5 (DEP domain-containing protein
5), NPRL2 (nitrogen permease regulator 2-like
protein) and NPRL3 (nitrogen permease regulator
3-like protein) proteins, the latter MIOS (missing
oocyte, meiosis regulator, homologue), SEH1L
(SEH1 like), SEC13 (SEC13 homologue), WDR24
(WD repeat domain 24) and WDR59 (WD repeat
domain 59). The role of each protein in these com-
plexes has still to be fully clarified, but the conser-
vation of the mTOR pathway architecture across
different species suggests that each partner of the
complex carries out fundamental functions.14

Recently, mutations in the genes encoding the com-
ponents of the GATOR1 subcomplex have been
associated with several genetic focal epilepsy (FE)
syndromes, including autosomal-dominant noctur-
nal frontal lobe epilepsy (ADNFLE, MIM 600513),
recently renamed as autosomal-dominant
sleep-related hypermotor epilepsy;15 epilepsy with
auditory features (EAF, also known as lateral tem-
poral lobe epilepsy, TLE, MIM 600512); familial
FE with variable foci (FFEVF, MIM 604364).16–20

DEPDC5 mutations have also been recently
described in patients manifesting rolandic epilepsy
or epileptic spasms.21 22

MUTATIONS OF GATOR1 IN FE SYNDROMES
Epilepsy is a widespread neurological disorder
affecting about 1% of the global population.23 In
FE, seizures originate from a limited area of the
brain (the epileptogenic zone, EZ). FEs account for
nearly 60% of all epileptic syndromes, and can be
caused by genetic as well as acquired factors.24 25

Paradigmatic FE genetic syndromes (EAF, ADNFLE
and FFEVF) have been associated with mutations
in a number of genes (figure 2) coding for proteins
implicated in different brain functions (eg, synapse
development and transmission or neuronal excit-
ability).17–20 26–32 The identification of mutations
in GATOR1 genes in all these epileptic syndromes
opens the interesting scenario of defects of the
same pathway underlying different epilepsy pheno-
types (figure 3 and table 1 provide a summary of
the mutations identified so far).16–18 20 21 33–41

Mutations in DEPDC5, first identified in seven
out of the eight FFEVF families linked to chromo-
some 22q12,18 were subsequently implicated in the
5%–37% of a broad range of FEs, including NFLE
and TLE.16 36 More recently, the description of
NPRL2 and NPRL3 mutations in patients with FE
confirmed the involvement of the entire GATOR1
complex in the pathogenesis of different FE syn-
dromes.19 20 Collectively, the data published so far
indicate that mutations in genes encoding the
GATOR1 complex are the most frequent genetic
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cause of FEs, globally accounting for 9% of the cases.20

Mutations in these genes may show a wide interfamilial and
intrafamilial variability in epilepsy phenotypes, as exemplified
by FFEVF. Within a family, the same mutation can be associated
with lesional and non-lesional epilepsy: in only some of the
affected members, brain MRI disclosed malformations of cor-
tical development (MCDs), in particular focal cortical dysplasia
(FCD) type IIb.19 20 38–41 FCDs are the most common cause of

medically refractory epilepsy.45 Surgery represents a highly
effective treatment in these patients and requires a comprehen-
sive presurgical assessment for identification of the EZ, espe-
cially in the 15% of ‘lesion negative’ cases where subtle FCD
are detected only by histology.46 The aetiology of FCDs is
largely unknown, but the identification of mutations in
GATOR1-encoding genes in patients with such MCDs suggests
an alteration of mTOR signalling pathway. Interestingly, other

Figure 1 Schematic representation of mTOR signalling pathway. mTOR, mammalian or mechanistic target of rapamycin.

Figure 2 Genes mutated in the major focal epilepsy syndromes. The localisation of the squares on the brain image is related to the cortical lobe
involved in the epileptic discharges in the major FEs to which these genes have been associated. AD, autosomal dominant; AR, autosomal recessive;
NFLE, nocturnal frontal lobe epilepsy; TLE, temporal lobe epilepsy; FFEVF, familial focal epilepsy with variable foci.
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forms of MCDs are due to abnormal neuronal and glial prolifer-
ation caused by an aberrant activation of mTOR signalling
cascade, as in tuberous sclerosis complex (TSC), which is caused
by mutations in TSC1 and TSC2, encoding two interacting inhi-
bitors of mTORC1 (figure 1).47 Furthermore, recent publica-
tions have demonstrated that somatic brain mutations are
implicated in the pathogenesis of MCDs, as already recognised
for tumour development in patients with TSC.40 41 48–51 In FE
families, MCDs may be observed in only a portion of the
affected members carrying a germinal mutation in a
GATOR1-encoding gene.38 40 41 This might be explained by the
limitations of conventional neuroimaging techniques, which
may fail to detect subtle brain lesions.46 Alternatively, a
‘two-hits model’ has been proposed, by which a second brain
somatic mutation in the same gene is hypothesised to be respon-
sible for the development of MCD. Baulac et al40 studied a
family, in which a DEPDC5 mutation segregated in all affected
members. In one of the patients with FCD, they examined a

lesional tissue specimen and found a brain somatic DEPDC5
mutation in addition to the germline hit. They suggested that
this is consistent with a two-hit model leading to biallelic inacti-
vation of the gene within the lesional tissue. However, there is
still limited experimental evidence that this hypothesis, which
has been proven valid for TSC1/TSC2,51 holds for genes of the
GATOR1 complex. Most of the DEPDC5 mutations described
so far are loss-of-function mutations (table 1), suggesting that
the loss of the inhibition of mTORC1 activity could be the
cause leading to epilepsy. The hyperactivation of mTORC1 has
been also detected both with in vitro systems and in brain resec-
tions from GATOR1 mutated patients.19 38 42 This latter point
is of particular interest because an abnormal mTORC1 signal-
ling is known to cause alterations in neuronal migration and cor-
tical lamination, as reported in tuberous sclerosis52 and as
documented in the heterozygous DEPDC5 rat model (Depdc5±)
recently published.53 The functional assessment of 12 selected
DEPDC5 variants identified in patients with FE has revealed

Figure 3 Schematic representation of Gap Activity TOward Rags 1 (GATOR1) genes and published mutations. The mutations reported are
subdivided in loss-of-function mutations (upper panel in each gene representation) and missense mutations (lower panel). Splicing affecting
mutations listed in table 1 are not included.
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Table 1 Published GATOR1 gene mutations and associated phenotypes.

Gene Nucleotide change Protein change Phenotype References

DEPDC5 c.21C>G p.Tyr7* FFEVF+BOSD 18 39

DEPDC5 c.1663C>T p.Arg555* FFEVF+FCD 18 38

DEPDC5 c.488_490delTGT p.Phe164del FFEVF 18

DEPDC5 c.4107G>A p.Trp1369* FFEVF, NFLE 18 37

DEPDC5 c.4606C>T p.GIn1536* FFEVF 18

DEPDC5 c.1122delA p.Leu374Phe fs*30 FFEVF 16

DEPDC5 c.715C>T p.Arg239* FFEVF 16 40

DEPDC5 c.1114C>T p.Gln372* FFEVF 16

DEPDC5 c.2527C>T p.Arg843* FFEVF, FFE 18 36

DEPDC5 c.4397G>A p.Trp1466* FFE 18

DEPDC5 c.193+1G>A – FFE, ES+FE+ID+ASD 18 22

DEPDC5 c.279+1 G>A – FFE+SBH 18 39

DEPDC5 c.1459C>T p.Arg487* FFE, NFLE 18 37

DEPDC5 c.3802C>T p.Arg1268* FFE 18

DEPDC5 c.982C>T p.Arg328* FTLE 16

DEPDC5 c.4567C>T p.Gln1523* ADNFLE 16

DEPDC5 c.418C>T p.Gln140* FFE+BOSD 39

DEPDC5 c.3311C>T p.Ser1104Leu FFE 18

DEPDC5 c.3217A>C p.Ser1073Arg FFE 18

DEPDC5 c.1355C>T p.Ala452Val FFE, FCD 18 41

DEPDC5 c.1454G>A p.Arg485Gln FTLE 16

DEPDC5 c.3417delA p.Ile1139Met fs*24 FECTS 21

DEPDC5 c.59-1G>C – FECTS 21

DEPDC5 c.2593C>T p.Arg865* FECTS 21

DEPDC5 c.727C>T p.Arg243* FECTS, NFLE 21 20

DEPDC5 c.814G>T p.Val272Leu FECTS 21

DEPDC5 c.268G>A p.Val90Ile FECTS 21

DEPDC5 c.3457A>G p.Ser1153Gly FECTS 21

DEPDC5 c.2591C>T p.Thr864Met FECTS 36

DEPDC5 c.484-1G>A – FFE+FCD 40

DEPDC5 c.1264C>T p.Arg422* FFE+FCD, FLE 20 40

DEPDC5 c.1759C>T p.Arg587* FFE+FCD 40

DEPDC5 c.783_786delTGAG p.Asn261Lys fs*11 FCD 41

DEPDC5 c.6241+1G>A – FCD 41

DEPDC5 c.128_129insC p.Asn45Gln fs*3 HME 41

DEPDC5 c.2355-2A>G – NFLE 37

DEPDC5 c.3259C>T p.Arg1087* NFLE 37

DEPDC5 c.4112delT p.Leu1371Arg fs*14 EAF 17

DEPDC5 c.918C>G p.Tyr306* EAF 17 43

DEPDC5 c.3265-3C>T – TLE 20

DEPDC5 c.1092_1099insGGATTTGG p.Val367Gly fs*40 FLE 20

DEPDC5 c.1625A>C p.Gln542Pro FFE 20

DEPDC5 c.526C>T p.Gln176* NFLE 20

DEPDC5 c.4033+5A>G – TLE 20

DEPDC5 c.3461C>T p.Ser1154Phe TLE 20

DEPDC5 c.492delTCGTT p.Arg165Tyr fs*14 NFLE 20

DEPDC5 c.3241A>C p.Thr1081Pro ECSWS 20

DEPDC5 c.3696+5G>A – FFE 20

DEPDC5 c.435G>A p.Trp145* NFLE 20

DEPDC5 c.3994C>T p.Arg1332* TLE 20

DEPDC5 c.640C>G p.His214Asp NFLE 20

DEPDC5 c.161A>C p.Gln54Pro TLE 20

DEPDC5 c.3803G>A p.Arg1268Gln TLE 20

DEPDC5 c.1909C>T p.Arg637* NFLE 20

DEPDC5 c.985delA p.Thr329Leu fs*7 NFLE 20

DEPDC5 c.2390delA p.Gln797Arg fs*18 ES+EE+FCD+ASD 22

DEPDC5 c.1555C>T p.Gln519* ES+EE+FLE 22

DEPDC5 c.3092C>A p.Pro1031His ES+EE 22

DEPDC5 c.842A>T p.Tyr281Phe ES+EE+FCD 22

Continued

506 Baldassari S, et al. J Med Genet 2016;53:503–510. doi:10.1136/jmedgenet-2016-103883

Neurogenetics
 on A

pril 10, 2024 by guest. P
rotected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2016-103883 on 19 M

ay 2016. D
ow

nloaded from
 

http://jmg.bmj.com/


that only a portion has a clear effect on DEPDC5 signalling and
mTORC1 activation, in terms of expression, GATOR1 complex
formation, and interaction with active RagA/B-RagC/D heterodi-
mers in vitro (see below). These findings then suggest that some
of the identified GATOR1 variants could have distinct conse-
quences on GATOR1 function that may explain the phenotypic
variation observed among patients.42 Consequently, the finding
of a hyperactivation of mTORC1 signalling in patients with
GATOR1 mutations suggests a novel common pathological
mechanism underlying FEs with or without MCDs: indeed
these could be included in the so-called ‘mTORopathies’, with
important implications both in patients’ treatment and progno-
sis. However, since MCDs are not frequently found in
GATOR1-associated epilepsies, further studies will be needed to
elucidate the mechanism underlying MCD formation.

GATOR1 SUBCOMPLEX FEATURES AND ITS ROLE IN THE
MTOR PATHWAY
DEPDC5 is located on chromosome 22q12 and encodes a
1603–amino acid protein, ubiquitously and constantly expressed
both in the developing and in the adult brain, and characterised
by two functional domains.18 The DUF3608 domain of the
protein is thought to contribute to the interaction of the
DEPDC5 homologue with the two other components of
GATOR1 in yeast,54 but its function has not been characterised
in mammals yet. The DEP domain, which was named after the
initials of the proteins Disheveled, Egl-10 and Pleckstrin, is a
globular domain found in numerous GTPase activating proteins.
The DEP domain is also found in DEPTOR (a subunit of
mTORC1) where it has a role in the interaction between RGS
(regulator of G protein signalling) proteins and their membrane-
bound G-protein-coupled receptors.14 55 NPRL2 and NPRL3
are located on chromosomes 3p21.3 and 16p13.3 and encode
two proteins of 380 and 569 amino acids, respectively. Both
proteins are characterised by N-terminal longin domains and
PEST motifs.14 Longin domains are usually found in guanine
nucleotide exchange factor (GEF) proteins; however, a GEF
activity has not yet been demonstrated for these two pro-
teins.56–58 On the other hand, PEST motifs are often found in
rapidly degraded proteins, although these are not well con-
served in mammals and could not elicit this function in NPRL2/

3.11 14 No three-dimensional (3D) map of the GATOR1
complex is available at present, but a recently published combin-
ation of biochemical and computational approaches has revealed
the first 3D map of the yeast homologue of the mammalian
GATOR complex, in which the two homologous subcomplexes
form connected discrete modules, suggesting similar interactions
between GATOR1 and GATOR2.14 59 The GATOR complex is
a key regulator of the cellular sensing of nutrients levels,
through its regulation of mTORC1 activity, which plays a
pivotal role in this signalling; however, this has not been well
studied in neural systems.1 60 Figure 1 illustrates the main signal-
ling cascades converging on mTOR regulation. In the past few
years, GATOR1 was implicated in the inhibition of Rag GTPase
heterodimers RagA/B-RagC/D, which are involved in mTORC1
recruitment at the lysosome membrane, a key step required for
its phosphorylation and consequently activation by the small
GTPase RHEB.10 61 GATOR1 inhibition of RagA/B-RagC/D is
blocked by GATOR2 activation.10 The outcome of the fine
regulation of mTOR activity in the brain is the control of brain
development and function.4–7

NEUROLOGICAL DISORDERS RELATED TO MTOR PATHWAY
DEREGULATION
Given the multiple roles of mTOR pathway in brain homeostasis
and development, it is not surprising that its deregulation has
been implicated in several monogenic neurodegenerative and
neuropsychiatric diseases. These include the already cited TSC,
caused by mutations in TSC1 and TSC2, or the PTEN
Hamartoma Tumor Syndromes (including Cowden syndrome,
Lhermitte–Duclos disease and Bannayan–Riley–Ruvacalba syn-
drome) caused by mutations in PTEN; in all these cases the
genetic defect leads to the hyperactivation of mTORC1. TSC
and PTEN-mutated neurons have similar but not identical
pathologic phenotypes, possibly reflecting subtle differences in
the signalling that have yet to be discovered. Other neurodeve-
lopmental disorders due to mTOR deregulation include epilep-
tic encephalopathy, and neurodegenerative and psychiatric
diseases.62 63 The present review underlines the role of mTOR
hyperactivation in the major FE syndromes with or without
MCDs (table 1). In particular, both germinal and somatic muta-
tions have been reported in genes coding for different

Table 1 Continued

Gene Nucleotide change Protein change Phenotype References

NPRL2 c.100 C>T p.Arg34* NFLE 20

NPRL2 c.883C>T p.Arg295* TLE 20

NPRL2 c.329 C>G p.Thr110Ser TLE 20

NPRL2 c.640 G>C p.Asp214His FLE 20

NPRL2 c.314T>C p.Leu105Pro NFLE 20

NPRL3 c.835_836insT p.Ser279Phe fs*52 NFLE 20

NPRL3 c.1376_1377insAC p.Ser460Pro fs*20 FE+FCD, TLE 19 20

NPRL3 c.745G>A p.Glu249Lys FFE 20

NPRL3 c.275G>A p.Arg92Gln FE+GE+FCD, FLE 19 20

NPRL3 c.954_955insCCCA p.Trp319Pro fs*13 TLE 20

NPRL3 c.1352_1354 delACAGins
TGACCCATCC

– FE+FCD 19

Variants classified as pathogenic by functional studies are indicated in bold.19 42 Mutation p.Tyr306* in the same family has been independently described in Pippucci et al and Striano
et al.17 43 44 Mutation p.Arg239* in the same family has been reported in two separate publications.16 40

ADNFLE, autosomal-dominant nocturnal frontal lobe epilepsy; ASD, autism spectrum disorder; BOSD, bottom-of-sulcus dysplasia; EAF, epilepsy with auditory features; ECSWS, epileptic
encephalopathy with continuous spike and wave in slow-wave sleep; EE, epileptic encephalopathy; ES, epileptic spasms; FCD, focal cortical dysplasia; FE, focal epilepsy; FECTS, focal
epilepsy with centro-temporal spikes; FFE, familial focal epilepsy; FFEVF, familial focal epilepsy with variable foci; FLE, frontal lobe epilepsy; GE, generalised epilepsy; HME,
hemimegalencephaly; ID, intellectual disability; NFLE, nocturnal frontal lobe epilepsy; SBH, subtle band heterotopia; TLE, temporal lobe epilepsy.
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components of mTOR signalling, such as GATOR1 encoding
genes, PIK3CA, AKT3 and MTOR itself.7 19 33 48 64 Despite
several evidences implicating the deregulation of mTOR
pathway in the pathogenesis of epilepsy, the way in which it trig-
gers epileptogenesis is still unknown. mTORC1 hyperactivation
could contribute to aberrant circuit formation or alter already
established neural circuits. Furthermore, as mTOR activity is
regulated by several non-genetic factors, a combination of muta-
tions in mTOR signalling genes and environmental factors
could hyperactivate mTOR synergistically, representing a pos-
sible explanation for the variable phenotypes found in
mTORopathies.62 Moreover, MCD-related epilepsies due to
mutations in mTOR pathway genes often show early onset and
poor response to pharmacological treatment. This could be
partly explained by the fact that anticonvulsant medications rep-
resent only a symptomatic therapy, which does not address the
underlying biological mechanism. The implication of mTOR
signalling in a wide variety of lesional and non-lesional FEs is
now promoting the development of targeted therapies based on
mTOR inhibitors, which could significantly improve patients’
treatment and prognosis.65 66 In particular, the prototype drug
for all mTOR inhibitors developed so far is rapamycin; some
examples of available rapamycin analogues (rapalogs) are evero-
limus, temsirolimus and ridaforolimus.67 68 Second-generation
mTOR inhibitors block the feedback activation of PI3K/AKT sig-
nalling acting as ATP-competitive mTOR kinase inhibitors;
finally, drugs targeting downstream components of mTOR sig-
nalling pathway are being developed.68 69 Preclinical studies on
animal models of TSC and other mTORopathies have shown a
positive effect of rapamycin on the development of seizures and
on seizure frequency, and early administration resulted also in a
reduction of the alterations of cortical development. Moreover,
clinical pharmacological trials on patients with TSC are now
underway using rapalogs as everolimus, and first evidences
support the potential role of this class of drugs,51 notwithstand-
ing some concerns about the timing to obtain a curative effect
and the possible associated side effects; the review by Citraro
and colleagues70 comments on the last achievements of both
preclinical and clinical trials using mTOR inhibitors to treat epi-
lepsy or prevent epileptogenesis. Patients with refractory lesional
epilepsy eligible for surgery, who carry mutations in mTOR
pathway genes, represent a substantial challenge for the identifi-
cation of the correct therapeutic strategy. For instance, it is still
unknown whether germline mutations (which are present in
every cell of the brain) underlie neural malfunctioning, which is
more widespread than the focal lesion, as reported for TSC,
where extended epileptogenic networks not restricted to tubers
have been described.71 This implies that surgical resection of the
detected EZ may not be sufficient to abolish seizures. Rare cases
that underwent lesionectomy showed a good surgical
outcome;40 however, more robust prognostic data are needed.

CONCLUSIONS
In this review, we outlined the role of GATOR1 mutations in
FE. The involvement of DEPDC5, NPRL2 and NRPL3 genes in
different lesional and non-lesional FEs is in contrast to the pre-
vious knowledge that mutations in specific genes are linked to
epileptic syndromes in which seizures semiology suggested the
main involvement of specific brain areas (as for LGI1 mutations
in EAF, or neuronal nicotinic acetylcholine receptor in
ADNFLE). The histological analysis of brain specimens in indi-
viduals with MCDs, as those found in TSC or GATOR1
mutated patients, shows the hyperactivation of mTOR pathway
restricted to dysmorphic neurons, suggesting that even in those

patients without a detectable MCD, the presence of a small
group of dysmorphic neurons due to mTOR hyperactivation
can elicit an epileptogenic effect. In those cases with a detect-
able MCD the excision of the EZ may represent a curative
option, although the long-term outcome is still undefined. In
pharmacoresistant patients, not eligible for surgery, the
GATOR1/mTOR signalling represents a promising therapeutic
target. Furthermore, as mTOR inhibitors have shown an anti-
convulsant and an antiepileptogenic effect, this will open the
way to a novel class of antiepileptic drugs that could reduce the
neurological conditions derived by recurrent seizures when early
administered to the patient.
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