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ABSTRACT
Mutations in the gene PRRT2 encoding proline-rich
transmembrane protein 2 have recently been identified
as the cause of three clinical entities: benign familial
infantile epilepsy (BFIE), infantile convulsions with
choreoathetosis (ICCA) syndrome, and paroxysmal
kinesigenic dyskinesia (PKD). Patients with ICCA have
both BFIE and PKD and families with ICCA may contain
individuals who exhibit all three phenotypes. These three
phenotypes were all mapped by linkage analyses to the
pericentromeric region of chromosome 16, and were
hypothesised to have the same genetic basis due to the
co-occurrence of the disorders in some families. Despite
considerable effort, the gene or genes for BFIE, ICCA,
and PKD were not identified for many years after the
linkage region was identified. Mutations in the gene
PRRT2 were identified in several Chinese families with
PKD, suggesting that the gene may also be responsible
for ICCA and BFIE in families linked to the chromosome
16 locus. This was demonstrated to be the case, with
the majority of families with ICCA and BFIE found to
have PRRT2 mutations. The vast majority of these
mutations are truncating and are predicted to lead to
haploinsufficiency. PRRT2 is a largely uncharacterised
protein. It is expressed in the brain and has been
demonstrated to interact with SNAP-25, a component of
the molecular machinery involved in the release of
neurotransmitters at the presynaptic membrane.
Therefore, the PRRT2 protein may play a role in this
process. However, the molecular mechanisms underlying
the remarkable pleiotropy associated with PRRT2
mutations have still to be determined.

INTRODUCTION
Benign familial infantile epilepsy (BFIE), previously
termed benign familial infantile seizures or benign
familial infantile convulsions, is a self-limiting
seizure disorder of infancy. Patients have non-
febrile seizures with onset at between four and
12 months of age and offset by 2 years of age.
Subsequent neurological development is usually
normal. BFIE was originally described by Watanabe
and colleagues1 in 1987 and the phenotype was
further described and named ‘benign familial
infantile convulsions’ by Vigevano and colleagues2

in 1992.
Watanabe and colleagues1 described nine infants

with benign complex partial epilepsies charac-
terised by the presence of clusters of seizures with
motor arrest, decreased responsiveness, and auto-
matisms. They observed that these infants had an
apparently normal developmental outcome and
that their seizures were easily controlled with antie-
pileptic drugs. This was in contrast to many cases
of seizures in infancy, which were associated with

an unfavourable outcome and developmental delay.
Watanabe and colleagues1 also observed that four
of the nine patients had a family history of benign
infantile convulsions.
Vigevano and colleagues2 described a further five

infants with clusters of partial seizures with second-
ary generalisation occurring between the ages of 4
and 7 months. The epilepsy was familial in all cases
and had a favourable outcome. It was observed that
the clinical features in these patients were similar to
those seen in benign familial neonatal convulsions,
apart from the age of onset. It was also observed
that the features in these patients overlapped those
described by Watanabe and colleagues.1 Vigevano
and colleagues2 proposed the name ‘benign familial
infantile convulsions’ for the disorder. This nomen-
clature has since been updated and the disorder is
termed BFIE in the most recent classifications of
the International League Against Epilepsy.3

Paroxysmal kinesigenic dyskinesia (PKD), also
called paroxysmal kinesigenic choreoathetosis, is a
movement disorder characterised by sudden attacks
of involuntary movement that are induced by a
sudden movement from rest, such as rising from a
chair or starting to walk, or by exercise. The attacks
in PKD consist of dystonic posturing, chorea or
athetosis.4 Diagnostic criteria for PKD were pro-
posed by Bruno and colleagues5 and include attacks
with an identified kinesigenic trigger, short dur-
ation (<1 min), no associated loss of consciousness
or pain, normal neurologic examination, exclusion
of other causes, and onset at between 1–20 years of
age or a family history of PKD. The disorder was
delineated in detail in 1967 by Kertesz,6 who
described the phenotypes of 10 patients from six
families and reviewed similar reports from the
literature. It was observed in this study that the
disorder was often familial and therefore a genetic
cause was proposed. PKD usually has onset in late
childhood or adolescence and may remit in adult-
hood. The disorder responds well to treatment
with antiepileptic drugs, particularly carbamazepine
or phenytoin, and patients are otherwise
normal.5–7 PKD shows autosomal dominant inher-
itance in families and sporadic cases are also
observed.5 6

Infantile convulsions and choreoathetosis (ICCA)
is a syndrome in which BFIE and PKD co-occur in
the same patient or family. The syndrome was first
described as a distinct clinical entity in 1997 by
Szepetowski and colleagues,8 who identified four
French families with autosomal dominant inherit-
ance of BFIE and PKD. Genome-wide linkage ana-
lysis was performed for these families and all were
found to be linked to a 10 cM interval in the peri-
centromeric region of chromosome 16. Following
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this report, additional families with ICCA and linkage to the
same region were described.9 10 Families were also described
with BFIE or PKD alone that showed linkage to the same
region.11–19 ICCA, BFIE, and PKD were therefore hypothesised
to be allelic.11 The minimal critical region (MCR) for the major-
ity of these families corresponded to a 21.69 Mb (6 cM) region
between D16S690 and D16S517 on chromosome 16 and was
similar for ICCA, BFIE, and PKD (figure 1). A single BFIE
family with a recombination event at D16S685,13 potentially
reducing the MCR to a 2.7 Mb region between D16S690 and
D16S685, and a second PKD locus on the q-arm of chromo-
some 1620 were also described (figure 1).

IDENTIFICATION OF MUTATIONS IN PRRT2
Despite the identification of the chromosome 16 BFIE/ICCA/
PKD locus in 1997 and the subsequent extensive sequencing of
candidate genes within the region,19 21 the causative gene was
not identified for many years. In 2011, Chen and colleagues4

successfully employed a strategy combining linkage analysis and
whole exome sequencing to identify mutations in an uncharac-
terised gene, PRRT2, in eight Chinese families with PKD. This
finding was rapidly followed by many similar reports of muta-
tions in the same gene in families from different ethnic back-
grounds with PKD, ICCA, and BFIE.22–54 To date, over 330
families and individuals with mutations in PRRT2 have been
described. De novo mutations are observed in sporadic cases of
PKD, ICCA, and BFIE. The vast majority of these families (over
80%) have the same recurrent frameshift mutation: PRRT2
c.649-650insC; p.Arg217Profs*7. The remaining mutations in

PRRT2 are spread throughout the gene (table 1, figure 2). Most
of them are nonsense, frameshift and splice site mutations pre-
dicted to lead to protein truncation. Several of these mutations
have been demonstrated to cause altered cellular localisation of
the PRRT2 protein or loss of detectable protein expression in
vitro.4 28 Fifteen different missense mutations have been
reported.22–25 29 34 35 37 42 45 46 50 54 These alter amino acid
residues clustered in and around two putative transmembrane
domains located near the C-terminus of the protein (table 1,
figure 2A). In addition to these substitution and small insertion
or deletion mutations, three PKD or ICCA patients have been
described with large sub-microscopic deletions encompassing a
number of genes including PRRT2 (figure 2B).55–57 These find-
ings indicate the need for copy number variant analysis as well
as sequencing of PRRT2 to be included in a full diagnostic ana-
lysis of the gene.

Mutations in PRRT2 have also been identified in families with
hemiplegic migraine (HM) and other forms of migraine. This
association was initially described in a family with heteroge-
neous paroxysmal phenotypes including infantile seizures, PKD,
HM, and paroxysmal torticollis.33 Migraine was also noted as a
feature in some families where the primary phenotype was
PKD, ICCA or BFIE.24 31 44 46 52 53 A small number of families
with PRRT2 mutations have been described in which migraine,
most commonly HM, is the only phenotype observed.44 46 In
contrast to the high mutation rate observed in BFIE, ICCA, and
PKD patients, PRRT2 mutations account for only a small pro-
portion (0.7–3%) of cases of HM occurring without other par-
oxysmal disorders.44 45 47 The association of both migraine and
seizure disorders with the same gene has been previously
observed. A family with a mutation in ATP1A2 causing both
migraine and infantile seizures has been described58 and muta-
tions in SCN1A, which usually cause epilepsy, have been
described in patients with HM.59 60

Occasional families with PRRT2 mutations have been
described in which epilepsy phenotypes other than BFIE are
observed.48 54 These phenotypes include febrile seizures, febrile
seizures plus, and nocturnal convulsions. PRRT2 mutations have
not been associated with other phenotypes that include infantile
seizures. In particular, no mutations have been identified in
patients with convulsions with gastroenteritis (CwG) or benign
familial neonatal epilepsy (BFNE).43 48 50 BFNE is most com-
monly caused by mutations in the potassium channel subunit
genes KCNQ2 and KCNQ3.61 The seizures in CwG show
similar clinical characteristics to those seen in BFIE, but occur in
the context of gastroenteritis, often caused by rotavirus
infection.62

There is no evidence of a genotype–phenotype relationship
between PRRT2 mutations and the three different phenotypes
with which they are associated. All three phenotypes (BFIE,
PKD, ICCA) are associated with the common insertion mutation
(p.Arg217Profs*7) and all three phenotypes are also associated
with other mutations, including the 15 missense mutations. The
lack of a genotype–phenotype relationship is not unexpected
given the phenotypic variability seen in families with ICCA, in
which the same mutation can cause BFIE alone, PKD alone, or
both syndromes in different individuals within the same family.
This suggests that the expression of the phenotype is influenced
by other genetic or environmental factors, rather than the par-
ticular PRRT2 mutation carried by an individual. What these
additional factors may be has yet to be determined.

The common c.649-650insC mutation occurs in a homopoly-
mer tract of nine cytosine bases that are preceded by four gua-
nines. This sequence has the potential to form a hairpin loop (as

Figure 1 Linkage regions identified for infantile convulsions with
choreoathetosis (ICCA), benign familial infantile epilepsy (BFIE), and
paroxysmal kinesigenic dyskinesia (PKD) shown against a physical map
of the positions of microsatellite markers in the pericentromeric region
of chromosome 16 from MapViewer, based on human genome build
37.1. Linkage intervals for ICCA (red), BFIE (light blue), and PKD (dark
blue) from 13 publications are shown, along with the minimal critical
region derived from these linkage intervals.
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Table 1 Heterozygous mutations reported in PRRT2 in families and patients with PKD, ICCA, BFIE, and HM

Mutation Type Associated phenotype(s) Reference(s)

c.117delA; p.Val41Tyrfs*49 fs PKD 54

c.133-136delCCAG; p.Pro45Argfs*44 fs PKD 51

c.272delC; p.Pro91Glnfs*24 fs PKD 34

c.291delC; p.Asn98Thrfs*17 fs BFIE 29

c.369-370insG; p.Ser124Valfs*10 fs PKD 23

p.Arg145Glyfs*31 fs BFIE 44

c.487C>T; p.Gln163* ns ICCA 22

c.510-511insT; p.Leu171Serfs*3 fs PKD 54

c.513-514ins; p.Leu171Leufs*3 fs PKD 45

c.514-517delTCTG; p.Ser172Argfs*3 fs PKD 4

c.516-517insT; p.E173* fs ICCA 28

c.562C>T; p.Gln188* ns ICCA 30

c.573-574insT; p.Gly192Trpfs*7 fs ICCA 26

c.579-580insA; p.Gle194Argfs*6 fs ICCA 54

c.595G>T; p.Glu199* ns PKD 34

c.604-607delTCAC; p.Ser202Hisfs*16 fs PKD 34

c.629delC; p.Pro210Glnfs*18 fs BFIE 29

c.629-630insC; p.Ala211Serfs*14 fs PKD, ICCA 25 30

c.649C>T; p.Arg217* ns PKD, ICCA 30 31 35 38 40 54

c.649delC; p.Arg217Glufs*12 fs PKD, ICCA, HM 30 31 34 47

c.649-650insC; p.Arg217Profs*8 fs PKD, ICCA, BFIE, HM 4 22–36 39 41 43–54

c.718C>T; p.Arg240* ns ICCA, BIS, PKD 28 34 39 44

p.Ser248Alafs*65 fs ICCA 44

c.748C>T; p.Gln250* ns ICCA 27

c.776insG; p.A260* fs PKD 41

c.796C>T; p.Arg266Trp ms PKD 22

c.824C>T; p.Ser275Phe ms ICCA 35

c.841T>C; p.Trp281Arg ms PKD 23

c.859G>A; p.Ala287Thr ms PKD 23

c.872C>T; p.Ala291Val ms PKD 54

c.879+1G>T ss BFIE 25

c.879+5G>A ss BFIE 25

c.880-2A>T ss ICCA 46

c.904-905insG; p.Asp302Glyfs*38 fs ICCA 24

c.913G>A; p.Gly305Arg ms PKD 24 37

c.913G>T; p.Glu305Trp ms PKD 45

c.916G>A; p.Ala306Trp ms BFIE 46

c.917C>A; p.Ala306Asp ms ICCA 42

c.922C>T; p.Arg208Cys ms PKD 23 34

c.950G>A; p.Ser317Asn ms ICCA 25

c.964delG; p.Val322Trpfs*15 fs PKS 23

c.968G>A; p.Gly232Glu ms BFIE 29

c.970G>A; p.Gly324Arg ms ICCA 46

c.971G>A; p.Gly324Glu ms BFIE 46

c.972delA; p.Val325Serfs*12 fs PKD 4

c.980-981insT; p.Ile327Ilefs*14 fs PKD 28

c.981C>G; p.Ile327Met ms BFIE 50

p.332insGAC ifi ICCA 45

c.1011C>T ss PKD 45

c.1011-1012delCG+1-9del9bp ss PKD 23

c.1012+2insT ss BFIE 43

0.544 Mb deletion at 16p11.2 affecting approximately 30 genes del PKD 55

0.6 Mb deletion at 16p11.2 affecting 27 genes del ICCA 56

0.43 Mb deletion at 16p11.2 affecting 30 genes del PKD 57

Mutations reported in multiple families are indicated in bold and the common insertion mutation is indicated in bold and underlined.
BFIE, benign familial infantile epilepsy; BIS, benign infantile seizures; del, large deletion; fs, frameshift; ifi, in-frame insertion; HM, hemiplegic migraine; ICCA, infantile convulsions with
choreoathetosis; ms, missense; ns, nonsense; PKD, paroxysmal kinesigenic dyskinesia; ss, splice site.
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illustrated in figure 3), which may cause polymerase slippage
and the insertion of an additional base during DNA replica-
tion.25 The poly-C tract appears to be particularly prone to
mutation: in addition to the common insertion mutation, a 1 bp
deletion and a nonsense mutation affecting the same nucleotide
have been reported several times (table 1). Furthermore, there
are five single nucleotide polymorphisms (SNPs) altering bases
within the poly-C tract reported in public databases (dbSNP and
1000 Genomes).

The high frequency of the c.649-650insC mutation in this
homopolymer tract explains, at least in part, the failure of many
previous efforts to identify the BFIE/ICCA/PKD gene. Insertions
in homopolymer tracts are less likely to be detected by next gen-
eration sequencing (NGS) technologies, due to the technical
limitations of the chemistries and detection methods used by
them.63 Indeed, the failure of NGS methods to detect the
common insertion mutation has been described twice.25 29

Homopolymer tracts can also affect the results of classical

Sanger sequencing. Polymerase slippage when reading through
homopolymers leads to ‘noisy’ or ambiguous sequence follow-
ing the homopolymer tract. This has the potential to mask the
presence of insertion mutations in the homopolymer or other
mutations in the downstream sequence, as has been noted.27

FUNCTIONAL ROLE OF THE PRRT2 PROTEIN
The full length PRRT2 protein contains 340 amino acid residues
with two putative transmembrane domains near the C-terminal
end (figure 2A). The expression of the gene has begun to be char-
acterised.4 25 28 The mouse orthologue has been shown by in situ
hybridisation analyses to be localised throughout the brain, with
the highest mRNA concentrations seen in the cerebral cortex.4 25

Reverse transcriptase PCR (RT-PCR) experiments also showed
Prrt2 expression in the brain, with lower values seen in spinal
cord and no expression in other tissues tested.4 The Prrt2 mRNA
concentrations in mice were highest on postnatal day 14 (P14),
which corresponds approximately to an age of 1–2 years in
humans. Western blots of mouse tissues probed with anti-PRRT2
antibody showed high expression in the brain, low expression in
spinal cord, and no expression in other tissues tested,28 reiterat-
ing the RT-PCR results described above. Overall, these data dem-
onstrate convincingly that PRRT2 codes for a protein with
specific expression in the brain and nervous system. The expres-
sion of PRRT2 peaks during postnatal development, consistent
with its role in the pathogenesis of infantile seizures. Robust
expression of the mRNA throughout the mouse brain is still seen
at postnatal day 46,25 approximately equivalent to adolescence in
humans. The mRNA is present in the adult mouse brain,
although the expression levels are approximately 50% of those
seen at the peak of expression on P14.4 The expression of PRRT2
into adulthood is consistent with its role in the pathogenesis of

Figure 3 Sequence surrounding the polycytosine tract which is the
PRRT2 mutation hotspot and illustration of a potential hairpin loop
structure formed by it.

Figure 2 (A) Diagram of the PRRT2 protein, which contains 340 amino acid residues, showing the locations of known mutations in the gene. The
two putative transmembrane domains are indicated in dark grey and the proline-rich region in medium grey. Frameshift mutations are indicated by
stars, nonsense mutations by diamonds, missense mutations by crosses, splice site mutations by 12-pointed stars, and the in-frame insertion by a
three-pointed star. Mutations associated with paroxysmal kinesigenic dyskinesia (PKD) are shown in dark blue, infantile convulsions with
choreoathetosis (ICCA) in red, and benign familial infantile epilepsy (BFIE) in light blue. Mutations marked in purple are either associated with other
paroxysmal movement disorders, hemiplegic migraine alone or no phenotype was reported for them. (B) Map showing the extent of the three large
deletions identified in patients with PKD or ICCA and the genes involved in these deletions. PRRT2 is indicated in red. The region affected by the
deletions contains 26 other genes marked in grey and three pseudogenes marked as white boxes.
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PKD, which has onset in late childhood or adolescence and
sometimes continues during adult life.

Although PRRT2 is largely an uncharacterised protein, the first
steps have been taken in the understanding of its role in
neuronal function. Yeast-2-hybrid studies suggested that it inter-
acts with synaptosomal associated protein 25 (SNAP-25).64

This interaction was confirmed by in vitro and in vivo
co-immunoprecipitation experiments.28 SNAP-25 is a member of
the SNARE protein family. Proteins in this family are essential for
the transport of vesicles through the Golgi apparatus and to the
plasma membrane. SNAP-25 forms part of a complex involved in
the release of neurotransmitters from synaptic vesicles at the pre-
synaptic membrane. The SNAP-25 protein is located on the cyto-
plasmic surface of the plasma membrane in association with
syntaxin-1, which is membrane bound. Neurotransmitter release
is triggered by the influx of calcium ions resulting from an action
potential. These activate synaptotagmin and synaptobrevin mole-
cules on the cytoplasmic surface of the synaptic vesicle, causing
the binding of synaptobrevin to syntaxin-1 and SNAP-25 and
bringing the synaptic vesicle to the plasma membrane. The syn-
aptic vesicle then fuses with the plasma membrane, releasing its
contents into the synapse.65 Co-immunostaining experiments
using FLAG tagged PRRT2 expressed in primary hippocampal
neurones indicated that PRRT2 co-localised with synapsin-1 at
neuronal puncta.28 Synapsin-1 associates with the cytoplasmic
surface of synaptic vesicles and is involved in synaptogenesis and
the modulation of neurotransmitter release.66 67 The localisation
of PRRT2 at neuronal puncta and its interaction with SNAP-25
suggest that it may also play a role in the modulation of neuro-
transmitter release. A reduction in the amount of PRRT2 due to
haploinsufficiency presumably leads to a dysregulation of this
process. The seizures and dystonic posturing seen in BFIE and
PKD could possibly result from either excessive neurotransmitter
release at excitatory synapses or a reduction in the release of
inhibitory neurotransmitters. Understanding which of these pro-
cesses is affected will require a more precise understanding of the
role of PRRT2 in synaptic transmission. Increased understanding
of the pathogenic mechanism underlying PRRT2 mutations may
also explain the particular effectiveness of some antiepileptic
drugs—for example, carbamazepine, a sodium channel blocker—
in treating the disorders associated with PRRT2 mutations.
Presently there is no obvious link between decreased sodium
channel activity and the effective treatment of a disorder result-
ing from altered neurotransmission, but this may become appar-
ent in the future.

CONCLUSION
Mutations in PRRT2 account for between 40–100% of familial
cases of BFIE,25 29 39 46 48 33–100% of familial cases of
ICCA,22 24 28 30 34 35 39 46 48 and 62–100% of familial cases of
PKD4 22–24 28 30 34 35 in the various cohorts of patients that
have been studied. The percentages of sporadic cases found to
be PRRT2 mutation positive are generally lower, with mutations
found in 27–50% of PKD patients with no family
history23 24 30 35 and 29–100% of cases of sporadic benign
infantile seizures.25 29 39 46 48 The generally high frequency of
mutations in familial cases of PKD and BFIE indicates that
PRRT2 mutations are the most common cause of both disorders.
The frequency of mutations is particularly high in ICCA. It is
possible that the rare mutation negative ICCA families have non-
coding mutations or large deletions affecting PRRT2, as these
would not have been detected by the sequence based screening
methods used for the studies reviewed here. It is therefore pos-
sible that all cases of ICCA are caused by PRRT2 mutations. The

mutation negative BFIE and PKD cases may also have these
types of mutation, or may have mutations in other genes.

PRRT2 is the major gene for BFIE, ICCA, and PKD and con-
tains the second highest number of reported mutations asso-
ciated with epilepsy after SCN1A. The vast majority (95%) of
mutations in the gene are truncating mutations predicted to lead
to haploinsufficiency. A small number of missense mutations
have been reported and these all alter amino acid residues clus-
tered in two predicted transmembrane domains at the
C-terminal end of the protein. PRRT2 is predicted to code for a
protein involved in the modulation of presynaptic neurotrans-
mitter release, and a perturbation of this process is likely to be
the cause of the seizure and movement disorder phenotypes
associated with mutations in the gene. The identification of a
heterozygous mutation in PRRT2 can provide a definitive diag-
nosis for patients with suspected BFIE, ICCA or PKD. This
molecular diagnosis can reduce or prevent the need for add-
itional investigations in these patients and guide treatment for
these disorders.
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