
Constancy of α1-Acid Glycoprotein Variants of Caucasian Patients under Conditions of Severe Stress*

K. SCHMID, R. A. FIELD, and H. YOSHIZAKI†

From the Department of Biochemistry, Boston University School of Medicine, Boston University Medical Center, and Department of Medicine (Diabetes Unit), Massachusetts General Hospital and Harvard Medical School, Boston, Mass. 02118, U.S.A.

Recent studies on α1-acid glycoprotein (orosomucoid), a well-characterized globulin of normal human plasma (Schmid, 1953; Weimer, Mehl, and Winzler, 1950; Jeanloz, 1966), demonstrated that its sialyl-free form reveals on starch gel electrophoresis at pH 5 one or two bands depending on the individual serum from which this protein was isolated, and that these variants appear to be genetically transmitted (Schmid, Tokita, and Yoshizaki, 1965; Tokita, Burke, Yoshizaki, Fischer, and Schmid, 1966). In the present paper an investigation of the α1-acid glycoprotein variants of certain Caucasian diabetic patients who underwent hypophysial stalk section is presented, affording additional evidence for the genetically determined transmittance of the variants of this plasma globulin.

Material and Methods

Blood from 21 Caucasian patients with long-standing diabetes mellitus and active haemorrhagic retinopathy was obtained by venepuncture. After clotting the blood at room temperature the sera were separated by centrifugation, shell-frozen, and stored at −40°C. until fractionation was initiated. The volume of the sera specimens varied between 7 and 28 ml. These patients subsequently underwent hypophysial stalk section (HSS). Between the 3rd and 6th day after operation a second blood sample was taken. The haemacrits of these samples did not reveal any systematic changes either before or after the operation.

For the isolation of α1-acid glycoprotein, the sera were fractionated as described earlier (Schmid et al., 1965). Chromatography on Amberlite IRC-50 of the resulting fraction VI was carried out as previously reported (Schmid, MacNair, and Bürgi, 1958). The weight of the resulting α1-acid glycoprotein preparations was corrected for losses occurring during the fractionation (fraction I-V was not extracted) and chromatography (Schmid et al., 1958). Many of the preparations were analyzed by the horizontal starch gel electrophoresis technique in pH 8-6 borate buffer (Smithies, 1959), by immunoelectrophoresis (Grabar, 1959) and double diffusion technique (Ouchterlony, 1962). For the latter two analyses a goat serum active against pooled normal α1-acid glycoprotein purchased from Behringwerke, Marburg/Lahn, Germany, was utilized.

For the removal of the sialyl residues 2 to 3 mg. of each α1-acid glycoprotein preparation were dissolved in 1-65 ml. of pH 4-5, 1/2 0-1 sodium acetate buffer, mixed with 0-35 ml. of neuraminidase solution (Schmid et al., 1965; Tokita et al., 1966) and incubated at 37°C. for 4 hours. In control experiments with pooled α1-acid glycoprotein it could be shown that 98 to 99% of the sialyl residues were cleaved off during this incubation period, while the individual specimens lost between 90 and 96% of this amino sugar. The neuraminidase used for these experiments was derived from a filtrate of Clostridium perfringens, and was shown to be free of proteolytic and other hydrolytic activities (Cassidy, Jourdain, and Roseman, 1965). It should be emphasized that all α1-acid glycoprotein preparations investigated in the present study were incubated simultaneously with this enzyme. The analysis for the variants of this protein was performed by starch gel electrophoresis at pH 5-0 (Schmid et al., 1965).

The preparation of the orosomucoid fraction and the determination of its polypeptide and hexose content were carried out with minor modifications according to the procedure of Winzler (1955). Since often only small volumes of blood were available, 3-0 ml. of each patient’s serum were used for the preparation of this fraction. As controls for each set of analyses, normal human serum and normal α1-acid glycoprotein (Schmid, 1953) were included to check the entire procedure and the orcinol and biuret methods, respectively.

Received June 29, 1967.

* This investigation was supported by grants from The Lilly Research Laboratories, Eli Lilly Company, Indianapolis and the U.S Public Health Service, National Institute of General Medical Sciences (GM-10374 and 1-K3-GM-32, 160) and National Institute of Arthritis and Metabolic Diseases (AM-4501). A preliminary note on this study was published in Federation Proceedings: 24, 469 (1965).

† Recipient of a Travel Fellowship from the Japanese Ministry of Education, Tokyo, Japan.
Results

Blood Levels of Seromucoid and α_1-Acid Glycoprotein. The diabetic patients, before HSS operation, showed seromucoid levels (Table) within a relatively narrow range, with an average which was essentially identical with the normal value obtained in this study and that reported by Winzler (1955). The corresponding post-operative values were almost doubled. The α_1-acid glycoprotein levels of these individuals were similarly increased. The varying, relative difference between the seromucoid fraction and the α_1-acid glycoprotein content is due to the presence in the former of varying amounts of other plasma proteins, such as haptoglobin (Schultze, Heide, and Haupt, 1962), in these disease states. It should be added that the blood concentration of α_1-acid glycoprotein, a value of major importance for this study, was measured by direct isolation of this protein and indirectly by determining the seromucoid fraction.

The seromucoid fraction was also measured in terms of neutral hexoses. The pre-operative values ranged from 8.5 to 20 mg./100 ml. and averaged 12 mg. The normal seromucoid fraction was found to be 12 mg., a value essentially identical with that reported earlier by Winzler (1955). The corresponding values of the post-operative analyses ranged from 12 to 32 mg./100 ml. and averaged 20 mg. Both the pre- and post-operative analyses showed distributions that were very similar to those obtained by the polypeptide determinations.

Constancy of α_1-Acid Glycoprotein Variants of Diabetic Patients with Hypophysial Stalk Sections. The main finding of this investigation was the constancy of the type of the α_1-acid glycoprotein variant(s) of each individual as observed over the period studied (Table). Representative starch gel electrophoresis patterns of the sialyl-free α_1-acid glycoprotein preparations are given in Fig. 1.

Table

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (yr.)</th>
<th>Sex</th>
<th>α_1-Acid Glycoprotein Variants (Type of Pattern)</th>
<th>α_1-Acid Glycoprotein (mg./100 ml.)</th>
<th>Seromucoid (mg./100 ml. polypeptide)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.J.</td>
<td>51</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>30</td>
</tr>
<tr>
<td>A.L.</td>
<td>35</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>38</td>
</tr>
<tr>
<td>W.A.</td>
<td>57</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>34</td>
</tr>
<tr>
<td>B.C.</td>
<td>39</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>44</td>
</tr>
<tr>
<td>B.C.</td>
<td>39</td>
<td>M</td>
<td>I</td>
<td>I</td>
<td>44</td>
</tr>
<tr>
<td>M.F.</td>
<td>41</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>35</td>
</tr>
<tr>
<td>B.R.</td>
<td>24</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>36</td>
</tr>
<tr>
<td>C.I.</td>
<td>30</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>39</td>
</tr>
<tr>
<td>B.L.</td>
<td>45</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>63</td>
</tr>
<tr>
<td>I.W.</td>
<td>38</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>44</td>
</tr>
<tr>
<td>M.A.</td>
<td>42</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>51</td>
</tr>
<tr>
<td>C.W.</td>
<td>34</td>
<td>M</td>
<td>II</td>
<td>II</td>
<td>23</td>
</tr>
<tr>
<td>S.L.</td>
<td>23</td>
<td>F</td>
<td>III</td>
<td>III</td>
<td>96</td>
</tr>
<tr>
<td>G.M.</td>
<td>31</td>
<td>M</td>
<td>III</td>
<td>III</td>
<td>68</td>
</tr>
<tr>
<td>A.C.</td>
<td>25</td>
<td>M</td>
<td>III</td>
<td>III</td>
<td>30</td>
</tr>
<tr>
<td>J.R.</td>
<td>33</td>
<td>M</td>
<td>III</td>
<td>III</td>
<td>68</td>
</tr>
<tr>
<td>Z.A.</td>
<td>42</td>
<td>F</td>
<td>III</td>
<td>III</td>
<td>24</td>
</tr>
<tr>
<td>C.A.</td>
<td>30</td>
<td>F</td>
<td>III</td>
<td>III</td>
<td>37</td>
</tr>
<tr>
<td>B.E.</td>
<td>32</td>
<td>F</td>
<td>III</td>
<td>III</td>
<td>41</td>
</tr>
<tr>
<td>O.P.</td>
<td>27</td>
<td>M</td>
<td>III</td>
<td>III</td>
<td>34</td>
</tr>
<tr>
<td>B.C.</td>
<td>30</td>
<td>F</td>
<td>III</td>
<td>III</td>
<td>31</td>
</tr>
<tr>
<td>T.S.</td>
<td>41</td>
<td>M</td>
<td>III</td>
<td>III</td>
<td>35</td>
</tr>
</tbody>
</table>

Average: 44
SD: ±29
Range: 23–96

*Note that α_1-acid glycoprotein is expressed in total weight and that the polypeptide moiety of this protein accounts for approximately 60% of its weight. Hence, to compare directly the seromucoid values, expressed as polypeptide, with those of α_1-acid glycoprotein, the latter values must be reduced by 40%.

Starch Gel Electrophoretic, Immunoelectrophoretic, and Immunochemical Analyses of α_1-Acid Glycoprotein Preparations. Native α_1-acid glycoprotein preparations derived from serum of these patients before and after hypophysial stalk operation revealed, on starch gel electrophoresis at pH 8-6, homogeneity and the same apparent electrophoretic mobility (Fig. 2). On immunoelectrophoresis they each formed a single precipitin line and again showed the same apparent electrophoretic mobility. On double diffusion each preparation led to a single precipitin line. These lines fused complete with one another and
with that of pooled normal α_1-acid glycoprotein used as reference. The sialyl-free α_1-acid glycoprotein also appeared homogeneous on horizontal starch gel electrophoresis at pH 8.6.

Discussion

The present study on α_1-acid glycoprotein preparations, isolated from sera of patients with diabetes mellitus, revealed the following two main findings: (a) The α_1-acid glycoprotein variant(s) of each patient remained constant in spite of the greatly increased post-operative levels of this protein. This finding was interpreted to indicate that the α_1-acid glycoprotein variants were probably genetically transmitted. (b) The α_1-acid glycoprotein preparations isolated from the pre- and post-operative sera appeared identical with each other and with pooled normal α_1-acid glycoprotein as judged by starch gel electrophoretic, immunoelectrophoretic, and double diffusion analysis. Hence, it was concluded that these patients probably produced normal α_1-acid glycoprotein before and after operation. By contrast, in certain disease states α_1-acid glycoprotein is synthesized on a sialic acid deficient form (Schmid, Burke, Debray-Sachs, and Tokita, 1964; Caputo and Marcante, 1964).

Because of the stress of the HSS operation, the levels of the seromucoid fraction and α_1-acid glycoprotein were increased approximately twofold as compared with the pre-operative values. A corresponding finding was recently reported for normal adults who had undergone certain major surgery and for pregnant women who were studied before and after delivery (Tokita et al., 1966).

It should be emphasized again that the observed changes in α_1-acid glycoprotein levels appeared to be unrelated to the antecedent and post-operative clinical courses of the patients and to whether or not their retinopathy was favourably influenced (Field, 1965). Thus, no evidence was obtained which would support a role for this plasma protein either in the pathogenesis or continuation of the retinopathy.

Summary

α_1-acid glycoprotein (orosomucoid) was isolated from blood of 21 Caucasian patients with diabetes

\(\alpha_1\)-Acid Glycoprotein Variants in Conditions of Stress

by A. Field

...and active haemorrhagic retinopathy, and was taken before and after hypophysial stalk section. After enzymatic cleavage of their sialyl residues, these protein preparations were subjected to starch gel electrophoresis at pH 5 to identify the type of variants.

Constancy of the \(\alpha_1\)-acid glycoprotein variants was observed in each patient in spite of the considerable increase in the blood level of this protein due to the stress of the operation. The \(\alpha_1\)-acid glycoprotein produced by these patients before and after operation appears to be identical with normal \(\alpha_1\)-acid glycoprotein as judged by several criteria. It was concluded that this observation was consistent with the concept of the genetically determined transmission of the \(\alpha_1\)-acid glycoprotein variants.

The authors are grateful to Drs. S. Roseman and G. W. Jourdian, University of Michigan, Ann Arbor, Michigan, for the generous gift of highly purified Clostridium perfringens neuraminidase. The expert technical assistance of Miss Kathi Hunziker is gratefully acknowledged.

References

Constancy of alpha-1-acid glycoprotein variants of Caucasian patients under conditions of severe stress.
K Schmid, R A Field and H Yoshizaki

J Med Genet 1968 5: 36-39
doi: 10.1136/jmg.5.1.36

Updated information and services can be found at:
http://jmg.bmj.com/content/5/1/36.citation

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/