Dermatoglyphs in Human Polyploidy

L. S. PENROSE

From Kennedy-Galton Centre, Harpurbury Hospital, St. Albans, Hertfordshire

Chromosomal aberration is frequently accompanied by distortion of the dermatoglyphic patterns on hands and feet. It is therefore to be expected that triploids and tetraploids, whether complete or mosaic, will be likely to show peculiarities. Abnormal dermatoglyphs are inevitable if there is growth disturbance which affects the extremities. It is remarkable, on the whole, how relatively slight are the morphological changes of pattern which have been found in association with human polyploidy as compared with those found, for example, in trisomics. One feature that occurs fairly consistently is some degree of webbing of fingers and the disturbances of ridge formation exhibited are mainly consequences of this peculiarity.

Five cases were available for study, 3 surviving mosaic triploids, one surviving mosaic tetraploid, and one completely triploid foetus. These are listed in Table I.

In all the mosaic triploid cases, leucocyte cultures revealed the presence of normal diploid cells only. Triploid cells were found in varying proportions of fibroblasts examined in different cases. Conversely, the tetraploid mosaicism was only demonstrated in leucocytes (see Table II).

At the time of writing, these five cases are the only examples of human polyploidy surviving birth which have been described, and it may be of interest to summarize the information about their dermatoglyphs even if it is, in some respects, incomplete (see Fig. 1–5). No prints of the soles were available of Case 4 which only survived birth by a few hours. As was not unexpected, the most normal palmar patterns were found in Case 3, where the proportion of polyploid cells was least, and the most unusual features were present on the hands of Case 4 which was entirely triploid.

The most noticeable feature of the finger-tip patterns in these cases, listed in Table III, is that, among 50 digits on which they were decipherable, there were 5 which showed radial loops—nearly twice as many as might have been expected on the basis of population distributions. It should be noted, however, that, on 40 fingers of the normal close relatives of Case 2, there were 5 radial loops. Nevertheless, the radial loops on digits IV and V of the left hand of Case 4 are exceptional. Arches were found only in Case 5: this was associated with brachyphalangy. The total number of triradii on the ulnar sides of all fingers (R+W) is a little higher than would be normally expected. The sizes of the patterns, as judged by ridge-counting in

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Sex</th>
<th>Age</th>
<th>Karyotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>7</td>
<td>Mosaic triploid (XX/XY)</td>
<td>Böök and Santesson (1960)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>9</td>
<td>Mosaic triploid (XX/XY)</td>
<td>Ellis, Marshall, Normand, and Penrose (1963)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>10</td>
<td>Mosaic triploid (XY/XXX)</td>
<td>Perrier, Perrier, Stalder, Bühler, Bamatter, and Klein (1964)</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td></td>
<td>Triploid (XXX)</td>
<td>Edwards, Yuncken, Rushton, Richards, and Mittwoch (1967)</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>212</td>
<td>Mosaic tetraploid (XX/XXYY)</td>
<td>W. J. Mellman (1966, personal communication)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case No. and Sex</th>
<th>Leucocytes</th>
<th>Fibroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diploid</td>
<td>Triploid</td>
</tr>
<tr>
<td></td>
<td>Diploid</td>
<td>Triploid</td>
</tr>
<tr>
<td>1 M</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2 F</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3 M</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4 M</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>5 M</td>
<td>31</td>
<td>0</td>
</tr>
</tbody>
</table>

These percentage values are estimates based upon the published or reported cell numbers.

Received June 26, 1967.
those cases where this was possible, are normal (see Table IV).

On the palms there are anomalous interdigital triradii which are related to zygodactyly of digits III

and IV on the left hand of Case 2, digits II and III on both hands in Case 4, and IV and V on both hands in Case 5. Although clinical syndactyly was recorded in Case 1, the dermatoglyphic patterns do
not confirm this but they are consistent with slight generalized webbing. There is a complex pattern on the left hypothenar area in Case 1. Otherwise the most noteworthy palmar peculiarity is the thenar exit of the A-line on the left hands of Cases 1 and 2.

The patterns decipherable on toes were not remarkable. On the soles the configurations of Cases 1 and 3 are both of low intensity, each having only 5 triradii. The zygodactyly in Case 2 is reflected in the three distal interdigital triradii on each sole. Similar effects are just visible on the left sole of Case 5; here, on both soles, there is apparently an un-

In obtaining the material described in this paper I have been greatly helped by Drs. O. Brandberg, H. Forssman, and D. Klein, all of whom I wish to thank, and also Mr. A. J. Lee for his line drawings.

REFERENCES


Dermatoglyphs in human polyploidy.

L S Penrose

doi: 10.1136/jmg.5.1.1

Updated information and services can be found at:
http://jmg.bmj.com/content/5/1/1.citation

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/