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ABSTRACT
Background: Telomere length is a predictor for a number
of common age related diseases and is a heritable trait.
Methods and results: To identify new loci associated
with mean leukocyte telomere length we conducted a
genome wide association study of 314 075 single
nucleotide polymorphisms (SNPs) and validated the
results in a second cohort (n for both cohorts combined
= 2790). We identified two novel associated variants
(rs2162440, p = 2.661026; and rs7235755,
p = 5.561026) on chromosome 18q12.2 in the same
region as the VPS34/PIKC3C gene, which has been
directly implicated in the pathway controlling telomere
length variation in yeast.
Conclusion: These results provide new insights into the
pathways regulating telomere homeostasis in humans.

Telomeres are nucleoprotein structures capping
and protecting the ends of chromosomes. Because
of the ‘‘end replication problem’’,1 telomeres
shorten with each cell division and leucocyte
telomere length has been shown to decrease with
age at a rate of 20–40 base pairs per year.2 3

Telomere attrition is enhanced by inflammation
and oxidative stress and short telomere length is an
independent predictor of age related diseases such
as hypertension, myocardial infarction, congestive
heart failure, vascular dementia, osteoporosis,
osteoarthritis and Alzheimer’s disease.3

There is wide inter-individual variability in
telomere length at birth and at subsequent ages.
Both twin studies and intra-familial correlation
analysis have identified a genetic influence (from
40% to 80%) on telomere length variation.4 5

Genome-wide linkage studies have mapped QTLs
for this trait to chromosomes 12q12.225 and
14q23.2.4 More recently Mangino et al6 refined
the chromosome 12q12.22 locus and described an
associated polymorphism (rs2630778) in the BICD1
gene. To date, none of these findings have been
replicated, possibly due to difficulties in measuring
this trait in a large number of samples and due to
lack of high correlation between the methods used
to measure telomere length.

Genome-wide association (GWA) analysis is a
powerful tool for unlocking the genetic basis of
complex traits and has recently provided novel
insights into the genetic architecture of many
common diseases and traits.7 8 We therefore under-
took a GWA scan to identify common alleles that
may influence telomere length. Our findings
indicate that single nucleotide polymorphisms

(SNPs) rs2162440 and rs7235755 on chromosome
18q12.2 are associated with short telomere length
in two independent datasets of European descent.

METHODS
We conducted a two stages GWA study on 2790
individuals from the UK Adult Twin Register
(table 1), in which we evaluated 314 075 SNPs.
The design and methodology of the GWA study is
described in detail elsewhere.7 In brief, the dis-
covery sample consisted of 1625 women from the
St Thomas’ UK Adult Twin Registry,9 a large
cohort of twins historically developed to study the
heritability and genetics of diseases with a higher
prevalence among women. The sample is not
enriched for any particular disease or trait and is
representative of the British general population.4

The replication cohort included 1165 subjects of
both genders (table 1) from the UK Twin Registry
who were unrelated to the individuals from the
discovery sample.

Leucocyte telomere length (LTL) was derived by
using Southern blot analysis in duplicate to
measure the mean terminal restriction fragment.10

The coefficient of variation for this measurement
was 1.5%. Because all the individuals of the
discovery cohort were females, telomere length
was only adjusted for age. After adjustment, the
trait was normally distributed in the sample.

Genomic DNA was subjected to SNP genotyping
via the Infinium assay (Illumina, San Diego,
California, USA), using three fully compatible
BeadChip microarrays (HumanHap300-Duo,

Table 1 Characteristics of the 2790 individuals
assessed for telomere length variation

Twins UK
discovery
cohort

Replication
cohort

Total
sample

Subjects
assessed for TRF

1625 1165 2790

Age (years)* 47.9 (12.6) 49.2 (13.6) 48.5 (13.1)

Males* – 48.1 (13.8) 48.1 (13.8)

Females* 47.9 (12.6) 49.5 (13.5) 48.5 (13.0)

Sex – 264 264

Males 1625 901 2526

Females

LTL* 7.02 (0.67) 6.91 (0.68) 6.97 (0.68)

Males* – 6.68 (0.69) 6.68 (0.69)

Females* 7.02 (0.67) 6.98 (0.66) 7.01 (0.67)

LTL, leucocyte telomere length.
*Values presented as mean (SD).
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HumanHap300 and HumanHap550), according to the manu-
facturer’s protocols.

We excluded 733 SNPs that had a low call rate ((90%), 2704
SNPs that had Hardy–Weinberg p values ,1024, and 725 SNPs
with minor allele frequencies ,1%. We also removed subjects
where genotyping failed for .2% of SNPs. We retained for the
analysis 98.7% (314 075) of all available SNPs. Statistical
analysis was carried out with MERLIN (version 1.1.2)11 using
the score test (—fastAssoc), while accounting for family
structure and twin zygosity.12

RESULTS
In the discovery sample (n = 1625) the strongest association was
recorded for rs7374458 on chromosome 3 (5.2061026). We also
identified 28 SNPs with a p value of (1024 and 316 SNPs with a
p value of (1023. We visually inspected all the signal intensity
plots of these SNPs and excluded the markers that had been
miscalled (11.3%).

Since none observed p values reached a genome-wide
significance level after correcting for multiple testing, we
adopted the conservative approach of selecting for replication
only those polymorphisms with a p value ,1023 that were
<100 Kb from other associated SNPs (p(1.061022). Following
these criteria, we identified 15 associated loci including a total of
41 SNPs with the p values for the lead SNPs ranging from
5.2061026 to 9.761024 (table 2).

These 41 selected SNPs were genotyped in the replication
cohort (n = 1165) using Sequenom iPLEX (San Diego,
California, USA) technology. Because the replication cohort
included both males and females, LTL values were adjusted for
both gender and age. After adjustment the trait was again
normally distributed. To control for multiple testing, we used
an SNP spectral decomposition method proposed by Nyholt13

and modified by Li and Ji.14 After spectral decomposition of the
linkage disequilibrium (LD) matrices of the 41 analysed SNPs,
the corrected threshold of statistical significance in the
replication stage was estimated at p(2.161023 which is a
conservative correction for the number of independent SNPs
tested in the replication sample. The results of the association
analysis are reported in table 2 and show that we were able to
replicate the association observed in the GWA sample for two
markers, rs2162440 and rs7235755, both mapping to a 2.2 Kb
region of chromosome 18q12.2.

Since the discovery cohort included only females, we also
performed a gender specific analysis on the replication popula-
tion in order to test if the genetic variants may be associated
with telomere lengths only for females. The result showed that
for both SNPs the direction of the trend was consistent between
genders in the replication cohort (rs2162440: 2100 (44) base
pairs (bp) for females and 2140 (70) bp for males; rs7235755
294 (42) bp for females and 2138 (71) bp for males) and
between females of the two cohorts (rs2162440: 2104 (29) bp
for female in discovery and 2100 (44) bp for females in
replication; rs7235755 2104 (28) bp for female in discovery
and 294 (42) bp for females in replication). Although borderline
(due to small sample size), p values were statistically significant
for both SNPs in both genders in the replication cohort
(rs2162440: females p = 0.012, males p = 0.046; rs7235755:
females p = 0.02, males p = 0.049).

The joint analysis of genotyped data from the two cohorts
yielded combined p values of 2.6061026 (rs2162440) and
5.5061026 (rs7235755). Our analysis also indicated that the G
alleles of both SNPs were associated with shorter telomeres
(2106 (22) bp for rs2162440 and 2103 (22) bp for rs7235755),

extrapolating to an approximate 5 years of telomere erosion
based on estimates of loss with age.

DISCUSSION
Although our results are unlikely to be artefacts because the
identified SNPs were replicated in two independent cohorts, we
do believe that our power for identifying association was
reduced by the known limitations of the measurement
technique.15 Therefore, we can only detect common variants.
Indeed, it is likely that there are more loci with small genetic
effect that we did not detect because of the stringent thresholds
for statistical significance employed in this study. This would
explain why we did not detect loci such as those previously
identified on chromosome 12q12.22 and 14q23.2.

According to NCBI build 36, the associated polymorphisms
map to a 48 Kb LD block within a gene desert, between the
Bruno-like 4 (BRUNOL4, NM_020180) and VPS34 (also known
as PIK3C3, NM_002647) genes. The identified SNPs (or another
variant present in the LD block) might be influencing the
expression of either transcript through long range control, as
has been demonstrated for other genes.16 This hypothesis is
supported by the observation that the associated 48 Kb LD
block lies in a highly conserved genomic segment. The two
associated variants map ,70 Kb away from BRUNOL4 and
4.3 Mb away from VPS34. BRUNOL4 is a member of the CELF/
Bruno-like family, which encodes proteins bearing highly
conserved RNA recognition motif. RNA binding proteins are
important elements that control normal cell functions, regulat-
ing events such as RNA processing, mRNA transport, stability
and translation. VPS34 is a component of the phosphoinositide
(PI) 3 kinase family which includes proteins that regulate several
aspect of the cell physiology.17 Interestingly, VPS34 yeast
orthologue (Vps34) has been directly involved in the pathway
which regulates telomere length variation.18

In conclusion, we provide evidence from two independent
cohorts for a new locus on chromosome 18q12.2 associated with
short telomere length in humans. These data provide new
insights into the likely pathways and mechanisms regulating
telomere length in humans.
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