Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits

C Tilkeridis*, T Bei*, S Garantziotis, C A Stratakis


Background: Lumbar disc disease (LDD), one of the most common conditions for which patients seek medical care, has been associated with sequence changes of the COL genes. COL1A1, however, has not been studied in young patients with LDD; COL1A1 polymorphisms have been associated with bone mineral density (BMD) in several populations and with LDD in older adults.

Objective: To study COL1A1 polymorphisms in young Greek army recruits with LDD.

Subjects: These young soldiers were diagnosed with early LDD at the time of their presentation to a military training site. All patients had radiological confirmation of their disease; a control group was also studied.

Methods: Sp1-binding site polymorphism of the COL1A1 gene was investigated by standard methods.

Results: There was an increased frequency of the “s” genotype (33.3%) in LDD patients; none of the controls had this genotype. In addition, a significantly smaller number of controls was heterozygotes for this allele.

Conclusions: A previously studied sequence change of the regulatory region of the COL1A1 gene, the same as has previously been associated with low BMD in many populations and LDD in older adults, showed a strong association with LDD in young male soldiers who were recently diagnosed with this disease.

Table 1 Genotyping data from patients with lumbar disc disease and controls

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Controls (n = 12)</th>
<th>Patients (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G/G</td>
<td>4 (33.3%)</td>
<td>6 (25%)</td>
</tr>
<tr>
<td>G/T</td>
<td>8 (66.7%)</td>
<td>10 (41.7%)</td>
</tr>
<tr>
<td>T/T</td>
<td>0 (0%)</td>
<td>8 (33.3%)</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION

Lumbar disc disease (LDD) is among the most common ailments in Western societies. In the military, LDD often results in significant impairments and contributes greatly to health care costs and disability. Military training often results in exacerbation or presentation of LDD related symptoms. LDD appears to be a multifactorial disorder in which genetics play an important role, as it is evident from several recent studies.

Collagen is the most abundant structural component of the extracellular matrix. Changes in collagen cross linking have been identified in degenerative disc disease, and LDD was recently associated with a polymorphism of the collagen type IX (COL9A3) gene. Type I collagen is the major protein in skin, ligaments, and bone; both COL1A1 and COL1A2 are present in the main components of the intervertebral disc, the annulus fibrosus (primarily) and the nucleus pulposus (secondarily).

A G→T polymorphism within the COL1A1 regulatory region that affects the recognition site for transcription factor Sp1 has been associated with low bone mineral density (BMD), osteoporosis, and vertebral fractures mainly in postmenopausal populations. A recent paper in the Journal of Medical Genetics addressed the contribution of the Sp1 polymorphism in the determination of BMD in elderly white women. Although type I collagen abnormalities have been implicated in the pathogenesis of LDD, the Sp1 sequence alteration has not been investigated in young patients with LDD.

METHODS

We collected blood from 36 Greek army recruits at the time of recruitment (during basic training), 24 with LDD (mean (SD) age, 29 (7.6) years), and 12 controls matched for body mass index (BMI) (mean age, 25 (3.8) years). All were healthy, with normal BMD and no history of trauma or fractures. The only health complaint of the patient group was low back pain. All patients had radiological confirmation of LDD by magnetic resonance imaging. The protocol was approved by the Department of Defence Health Service Review Committee, Athens, Greece.

Genomic DNA was extracted from blood samples by standard methods. To detect the G→T polymorphism, we used a polymerase chain reaction based method; positive samples were sequenced for confirmation of the sequence change.

Abbreviations: BMD, bone mineral density; LDD, lumbar disc disease
proteoglycans synthesis by canine intervertebral disc cells. In mice genetically engineered for reduced type I collagen, vertebral disc tissue was also mechanically inferior when compared with control animals. It is therefore plausible that an increased ratio of COL1A1 expression compared with COL1A2—as suggested for the effect of this Sp1 binding site polymorphism—may lead to structural alterations as well as to healing defects in the annulus fibrosus and other components of the discs in LDD.

ACKNOWLEDGEMENTS

We thank Dr Joan Marini (NICHD, NIH) for a critical review of this work and submitted text. We also thank Dr Evangelos Kortessas, then Acting Director of the KEYG Center at Arta, Greece, for his support of the study and approval of the research protocol.

Authors’ affiliations
C Tilkeridis*, T Bei*, S Garantziotis, C A Stratakis, Center for Recruitment of Military Personnel for Health Services (KEYG), Hellenic Armed Forces, Arta, Greece, and the Section on Genetics and Endocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA

*Dr. Tilkeridis and Bei have contributed equally to this work and are thus sharing first authorship. Dr. Tilkeridis is currently at the Department of Orthopaedics, Demokrition University, Thrace, Greece; Dr. Garantziotis is currently at Department of Medicine at Duke University Medical Center, Durham, North Carolina 27710, USA.

Competing interests: none declared

Correspondence to: Dr Constantine A Stratakis, Section on Endocrinology and Genetics, DEB, NICHD, NIH, Building 10, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892, USA; stratakc@mail.nih.gov

Received 23 March 2005
Revised version received 23 March 2005
Accepted for publication 24 March 2005

REFERENCES

Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits

C Tilkeridis, T Bei, S Garantziotis and C A Stratakis

J Med Genet 2005 42: e44
doi: 10.1136/jmg.2005.033225

Updated information and services can be found at:
http://jmg.bmj.com/content/42/7/e44

These include:

Supplementary Material
Supplementary material can be found at:
http://jmg.bmj.com/content/suppl/2005/10/25/42.7.e44.DC1

References
This article cites 9 articles, 2 of which you can access for free at:
http://jmg.bmj.com/content/42/7/e44#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Molecular genetics (1254)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/