Angiotensin II type I receptor gene polymorphism: anthropometric and metabolic syndrome traits

Background: The renin angiotensin system is important in the regulation of vascular tone and fluid and electrolyte balance. The angiotensin converting enzyme gene (ACE) genotype has been shown to affect exercise response and glucose load response dependent on birth weight. Angiotensin II type I receptor (AGTR1) A1166C has been previously associated with the development of hypertension and coronary disease, but its metabolic effects have not been investigated.

Method: AGTR1 A1166C was genotyped by allele specific PCR in 378 individuals from Herfordshire, UK, who had been characterised for metabolic syndrome traits.

Results: Genotype counts were: AA, 183; AC, 170; CC, 25, consistent with Hardy-Weinberg equilibrium. The CC genotype was associated with significantly lower body mass index (by 1.7 units) in men (p = 0.03) and the same magnitude effect in women with significant lower weight in both genders (p = 0.01), also lower waist circumference and waist-hip ratio (p = 0.01) in men, with a trend for lower waist circumference in women also. Additionally, the CC genotype and/or C allele was associated with lower fasting glucose and insulin, and 30 and 120 min glucose in men (respectively, p = 0.08, 0.04, 0.01, 0.06). Lower means of systolic blood pressure, pulse pressure, cholesterol, and fasting triglyceride were also observed for the CC genotype in both genders though these were not statistically significant.

Conclusions: The AGTR1 1166 CC genotype appears to predispose to favourable anthropometric and metabolic traits, relative to cardiovascular risk.

One of the most important physiological pathways affecting the cardiovascular system and fluid and electrolyte balance is the renin angiotensin system (RAS) which, in parallel with kinins, has diverse regulatory roles in vasoconstriction, cell proliferation, and secretion of aldosterone from the adrenal gland (fig 1). Angiotensin II (AGT II) is the central component of the RAS pathway. It acts through two main receptors: the angiotensin II type I receptor (AGTR1) and the angiotensin II type II receptor (AGTR2). It is generally believed that AGTR1 is the dominant receptor in the cardiovascular system.

AGTR1 is located on 3q23–25 and spans about 60 kb including five exons and four introns. Exon sizes range from 59 to 2014 bp. Exon 5 is the largest and the only coding exon, while the first four exons encode a 5′ untranslated region (UTR). AGTR1 is expressed in different organs including the heart, skeletal muscle, brain, human liver, lung, and adrenal gland. This receptor is included in the guanyl nucleotide binding protein (G-protein) coupled receptor superfamily for which the intracellular messengers are phospholipase, calcium, and protein kinase. It has also been shown that angiotensin converting enzyme (ACE) inhibitors or AGTR antagonists are effective in the treatment of hypertension, chronic heart failure, and diabetic nephropathy (DN). Many polymorphisms in genes of the RAS pathway have been identified. In AGTR1 (GenBank accession no. AF245699), A1166C (single nucleotide polymorphism (SNP) ID: rs5186) represented in the 3′ UTR of the mRNA has been widely studied. It has been associated with phenotypic effects including essential hypertension, left ventricular hypertrophy, coronary artery disease (CAD), pre-eclampsia, pulse wave velocity in Caucasians and also in Japanese subjects. Moczulski et al. in a linkage study of discordant siblings identified a 20 cM region on the long arm of chromosome 3 containing AGTR1 which harbours a major locus for susceptibility to DN.

The effect of the insertion/deletion (I/D) polymorphism in intron 16 of the ACE gene on metabolism has also been studied. The ACE D allele is associated with higher plasma ACE. Cambien et al. showed that ACE I/D modulates the consequences of small for gestational age for insulin resistance in young adults; D allele attenuated the adverse effects of low birth weight and short gestational age. In addition, ACE I/D is associated with metabolic syndrome and ACE inhibitors lower the risk of diabetes development. Furthermore, Montgomery et al. reported that the insertion allele was associated with improved endurance performance, and it was concluded that the I/I genotype might maintain a positive energy balance during rigorous training suggesting enhanced metabolic efficiency in insertion carriers. Moreover, interaction between AGT II and insulin receptor signalling in the vasculature has been reported, in which AGT II inhibits insulin stimulated production of nitric oxide; this effect is mediated through AGTR1. There seems also to be a synergistic effect of A1166C and ACE I/D on CAD. Interestingly, it has been reported that in patients with

Abbreviations: ACE, angiotensin converting enzyme; AGT II, angiotensin II; AGTR1, angiotensin II type I receptor; AGTR2, angiotensin II type II receptor; BMI, body mass index; CAD, coronary artery disease; DN, diabetic nephropathy; HW, Hardy-Weinberg; I/D, insertion/deletion; K-EDTA, ethylenediaminetetra-acetic acid potassium salt; LD, linkage disequilibrium; OGTT, oral glucose tolerance test; RAS, renin angiotensin system; RNAbp, RNA-binding protein; SNP, single nucleotide polymorphism; UTR, untranslated region.
Angiotensinogen (AGT)

Renin

Angiotensin I

ACE

\[\text{AGTR1 (3q21-q25)} \]

Angiotensin II

\[\text{AGTR2} \]

- Vasoconstriction
- Cell proliferation
- Sodium/water reabsorption (homeostasis)

Cardiovascular and circulation

Figure 1 Renin angiotensin pathway.

CAD carrying the CC genotype of AGTR1 A1166C, the response to AGT II is increased.\(^{35}\) In addition, pharmacological blockade of AGTR1 induces peroxisome proliferator activated receptor-\(\gamma\) activity which promotes differentiation in adipocytes.\(^{36}\)

These reports encouraged us to study the possible associations of AGTR1 A1166C with metabolic traits since the ACE findings suggest that the genetic diversity of the RAS pathway may impact not only on vascular but also on metabolic traits.

METHODS

Subjects

Caucasian subjects aged 59–72 years (mean age 64.4 years, SD 3.0) from East Hertfordshire, UK were enrolled for studies of late life traits in relation to early life anthropometric measures, subject to ethical approval (North and East Hertfordshire Ethical Committee) and subject anonymity.\(^{37–39}\)

A total of 215 men and 123 women were included in the analysis of metabolic syndrome traits in relation to AGTR1 SNPs and haplotypes. These subjects were selected from among all births in the county of Hertfordshire, UK during 1911–1930, who were followed forward and found to be alive and still resident there in 1990–1995. The subset selected for detailed evaluation of metabolic syndrome comprised those willing to undergo an oral glucose tolerance test (OGTT) and did not differ significantly from the larger group with regard to birth weight or socioeconomic status. They underwent metabolic characterisation including measurements of blood pressure, pulse rate, and 0, 30, and 120 min glucose and insulin responses to 75 g OGTT. Their heights, weights, waist, and hip circumferences were also measured. Birth weight and 1 year weight were available from historical records.

Genotyping

DNA was extracted from 5 ml K-EDTA (ethylenediaminetetraacetic acid potassium salt) venous blood,\(^{40}\) and quantitation was done by picogreen assay. Long term aliquots were stored at \(-80^\circ\text{C}\) and 7 ng/\(\mu\)l working dilutions in water were prepared. In the next step, a long PCR (3 kb) spanning exon 5 was prepared and this was followed by a nested four primer ARMS assay of the A1166C site.\(^{41}\) Primer sequences are represented in table 1.

Long PCR

Templates were 3 \(\mu\)l (6–7 ng/\(\mu\)l) of genomic DNA. Reaction mix for 20 \(\mu\)l was: 2 \(\mu\)l of 10x long PCR buffer (140 mM ammonium acetate and 500 mM Tris-HCl pH 8.9), 0.25 mM dNTPs, 0.4 pmol primers (MWG-Biotech, Ebersberg, Germany), 2 mM MgCl\(_2\), 1.3 M betaine, 0.05 U/\(\mu\)l Gibco Taq DNA polymerase (Promega, Madison, WI, USA), 0.1 U/\(\mu\)l 1/250 Pwo (Roche Diagnostics, Lewes, UK), and water to 20 \(\mu\)l. Thermal cycling was on an MJ Tetrad (Bio-Rad, Hercules, CA): 94°C for 2 min; 94°C for 20 s, 65°C for 30 s, 68°C for 3 min, repeated for 35 cycles; then 68°C for 20 min. Checking electrophoresis for long PCR products was performed in submerged 1x TBE, 0.7% agarose gels at 100 V for 15 min. Detection was by ethidium bromide staining and scanning was on a Fluorimag 595 (Molecular Dynamics, Sunnyvale, CA).

A1166C genotyping

Samples (2 \(\mu\)l) of 1/100 dilution in water of long PCR products were taken as templates for AGTR1 tetraprimer ARMS reaction. Reaction mix was: 10x PCR buffer, 1% (\(v/v\)) w1, 2.0 mM MgCl\(_2\), 0.2 mM dNTPs, 2.2 pmol/\(\mu\)l oligos, and 0.05 U/\(\mu\)l Gibco Taq DNA polymerase. Thermal cycling was on an MJ Tetrad: 94°C for 2 min; then 94°C for 1 min, 58°C for 1 min, 72°C for 1 min, repeated for 25 cycles; and a final extension step at 72°C for 2 min. Bufferless electrophoresis was for 15 min at 150 V in 5% polyacrylamide MADGE gels prestained with ethidium bromide, as described previously.\(^{42}\)

Statistical analysis

Hardy-Weinberg (HW) equilibrium was tested, and phenotypic association analysis for genotypes was by ANOVA and for alleles by regression in STATA 7.0. Variables were log transformed to normal distributions as appropriate, and unadjusted and adjusted analyses were undertaken, as specified in table 3.

RESULTS

Genotype frequencies for AGTR1 A1166C are presented in table 2, and are consistent with HW equilibrium (\(\chi^2 = 3.1,\) \(p = 0.08\)). Initial validations, using control genomic DNAs, of the approach of nested allele specific PCR following AGTR1 long PCR confirmed identical results irrespective of whether diluted (1/100) long PCR or genomic DNA was used as the template for allele specific assays. Allele frequencies were 0.71 for allele A and 0.29 for allele C, consistent with previous reports. Table 3 shows the results of genotype-phenotype analyses in males and females.

In ANOVA tests, the CC genotype in males was associated with CAD carrying the CC genotype of AGTR1 A1166C, the response to AGT II is increased.\(^{35}\) In addition, pharmacological blockade of AGTR1 induces peroxisome proliferator activated receptor-\(\gamma\) activity which promotes differentiation in adipocytes.\(^{36}\)

In ANOVA tests, the CC genotype in males was associated with metabolic traits since the ACE findings suggest that the genetic diversity of the RAS pathway may impact not only on vascular but also on metabolic traits.

Table 1 PCR primers for the ARMS assay and long PCR

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long PCR</td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>5'-TCTCTAAAGTCGAGGCCCTTACCTCTCAC-GAG-3'</td>
</tr>
<tr>
<td>Reverse</td>
<td>5'-TGAATTTTGAGCCGGGAGGAACTGAAATGTA-3'</td>
</tr>
<tr>
<td>ARMS</td>
<td>5'-TCTGCACGACCTATCTTCAAGGAAATGTCG-3'</td>
</tr>
<tr>
<td>Allele specific A</td>
<td>5'-TCCCTTCAACCTTGAAAGAGATCA-3'</td>
</tr>
<tr>
<td>Allele specific C</td>
<td>5'-GCCTAAATCCCAACACCTTTCAAGA-3'</td>
</tr>
<tr>
<td>Forward</td>
<td>5'-AAGCACAGCCTAGGGAGGATGCACTTCT-3'</td>
</tr>
</tbody>
</table>

www.jmedgenet.com
For BMI (p = 0.01), waist-hip ratio (p = 0.004), waist circumference (p = 0.001), adult weight (p = 0.008), glucose at 30 min, and fasting fibrinogen, the associations were similar to those in men.

Regression tests on the C allele gave broadly similar difference by genotype in women; other RAS genotypes (AGTR1 C573T and ACE I/D) have previously been associated.

The CC genotype seems to be associated with lower BMI and glucose values at OGTT time points; a post hoc combined analysis is also shown in table 3. It is possible that the effects are stronger in men, or are male specific, since the statistical signals do not strengthen in the combined analysis. It is notable that association and linkage of the ACE gene with hypertension was observed to be male specific in the Framingham Heart Study. The CC genotype seems to be associated with lower BMI by 1.7 units and lower waist circumference by about 7 cm. Most of the BMI association is due to weight, although there is a trend on height (p = 0.07) in men and in combined analysis (the AA genotype is 2 cm taller) and non-significant difference by genotype in women; other RAS genotypes (AGTR1 A1166C and ACE I/D) have previously been associated.

Table 2 Genotype frequencies for AGTR1 A1166C

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Men</th>
<th>Women</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>122</td>
<td>61</td>
<td>183</td>
<td>190</td>
</tr>
<tr>
<td>AC</td>
<td>101</td>
<td>69</td>
<td>170</td>
<td>156</td>
</tr>
<tr>
<td>CC</td>
<td>17</td>
<td>8</td>
<td>25</td>
<td>32</td>
</tr>
</tbody>
</table>

Total 240 138 378 378

Men Women Observed Expected

42.08% 50% 44.97%

50.83% 44.2% 48.41%

50.08% 50% 44.97%

50.08% 50% 44.97%

For BMI (p = 0.01), waist-hip ratio (p = 0.004), waist circumference (p = 0.001), adult weight (p = 0.008), glucose at 30 min, and fasting fibrinogen, the associations were significant in combined analysis adjusted for gender.

Regression tests on the C allele gave broadly similar significances and these tests are also presented in table 3. A stronger statistical significance of effects was observed particularly for all glucose time points in the tolerance test.

DISCUSSION

We have examined anthropometric traits and the principal traits of metabolic syndrome in relation to AGTR1 A1166C, which has been extensively studied with regard to hypertension and CAD. Our analyses suggest that AGTR1 A1166C affects BMI, weight, waist circumference, and waist-hip ratio, CC homozygotes showing lower values. Baseline, 30 min, and 120 min glucose levels are also generally lower in CC homozygotes, being particularly significant in men.

Given known gender differences for anthropometric and metabolic traits, males were examined separately from females under a prior hypothesis. The lower significance in women may reflect the smaller number studied (138 v 240). Furthermore, differences of a similar magnitude are seen for CC genotype women for BMI and glucose values at OGTT time points; a post hoc combined analysis is also shown in table 3. It is possible that the effects are stronger in men, or are male specific, since the statistical signals do not strengthen in the combined analysis. It is notable that association and linkage of the ACE gene with hypertension was observed to be male specific in the Framingham Heart Study.

Table 3 The result of ANOVA and regression analysis (Reg.) of anthropometric and metabolic traits for the AGTR1 A1166C polymorphism in 240 men and 138 women

<table>
<thead>
<tr>
<th>Men</th>
<th>AC</th>
<th>CC</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>26.9 27.4 25.2</td>
<td>0.03 0.61</td>
<td>26.3 27.3 25.5</td>
</tr>
<tr>
<td>(kg/m²) (3.3) (3.4) (3.0)</td>
<td>(3.6) (4.7) (1.9)</td>
<td>0.48 0.40 (3.4) (4.0) (2.6)</td>
<td></td>
</tr>
<tr>
<td>Waist to hip</td>
<td>0.94 0.94 0.90</td>
<td>0.01 0.01</td>
<td>0.80 0.77 0.86 0.77</td>
</tr>
<tr>
<td>Ratio</td>
<td>0.05 0.05 0.05</td>
<td>0.06 0.05 0.04</td>
<td>0.09 0.09 0.08 0.08</td>
</tr>
<tr>
<td>Waist circumference (cm) (10.2) (9.0) (8.2)</td>
<td>0.06 0.12 0.07</td>
<td>0.09 0.11 0.09 0.09</td>
<td></td>
</tr>
<tr>
<td>Adult weight (kg) (11.5) (10.8) (11.0)</td>
<td>(9.8) (12.0) (5.3)</td>
<td>0.07 0.06 (12.6) (11.7) (9.9)</td>
<td></td>
</tr>
<tr>
<td>Height (m) (0.07) (0.05) (0.07)</td>
<td>0.07 0.03 0.06</td>
<td>0.11 0.12 (0.09) (0.07) (0.07)</td>
<td></td>
</tr>
<tr>
<td>Waist to hip</td>
<td>6.1 5.9 6.3</td>
<td>0.08 0.03</td>
<td>0.09 0.08 (1.2) (1.2) (1.1)</td>
</tr>
<tr>
<td>(mm/l) (1.2) (1.2) (1.1)</td>
<td>(1.1) (1.2) (1.1)</td>
<td>(1.1) (1.2) (1.1)</td>
<td></td>
</tr>
<tr>
<td>Glucose at 30 min</td>
<td>97.9 93.8 82.8</td>
<td>0.01 0.008 0.08 0.71 0.71 6.6</td>
<td>0.73 0.73 (6.9) (6.6) (6.6)</td>
</tr>
<tr>
<td>(mmol/l) (1.2) (1.2) (1.1)</td>
<td>(1.2) (1.2) (1.1)</td>
<td>(1.2) (1.2) (1.1)</td>
<td></td>
</tr>
<tr>
<td>Glucose at 120 min</td>
<td>6.8 6.9 6.3</td>
<td>0.06 0.02</td>
<td>0.07 0.02 (1.1) (1.2) (1.1)</td>
</tr>
<tr>
<td>(mmol/l) (1.1) (1.2) (1.1)</td>
<td>(1.1) (1.2) (1.1)</td>
<td>(1.1) (1.2) (1.1)</td>
<td></td>
</tr>
<tr>
<td>Insulin at 0 min</td>
<td>42.7 40.8 27.4</td>
<td>0.04 0.05</td>
<td>0.48 0.43 (2.0) (1.9) (1.9)</td>
</tr>
<tr>
<td>(pm/l) (1.2) (1.2) (1.2)</td>
<td>(1.7) (1.8) (1.2)</td>
<td>(1.7) (1.8) (1.2)</td>
<td></td>
</tr>
<tr>
<td>Insulin at 30 min</td>
<td>271.3 267.7 238.2</td>
<td>0.74 0.53</td>
<td>248.3 249.9 253.0</td>
</tr>
<tr>
<td>(pm/l) (1.9) (1.9) (1.6)</td>
<td>(1.7) (1.8) (1.6)</td>
<td>(1.7) (1.8) (1.6)</td>
<td></td>
</tr>
<tr>
<td>Insulin at 120 min</td>
<td>161.9 135.7 121.4</td>
<td>0.21 0.08</td>
<td>231.0 238.1 223.8</td>
</tr>
<tr>
<td>(pm/l) (2.3) (2.4) (1.8)</td>
<td>(1.9) (1.9) (1.7)</td>
<td>(1.9) (1.9) (1.7)</td>
<td></td>
</tr>
<tr>
<td>Systolic BP</td>
<td>165.0 162.9 156.9</td>
<td>0.30 0.15</td>
<td>154.9 156.0 161.3</td>
</tr>
<tr>
<td>(mmHg) (21.8) (20.8) (16.8)</td>
<td>(21.2) (23.4) (17.1)</td>
<td>(21.9) (22.2) (16.7)</td>
<td></td>
</tr>
<tr>
<td>Pulse pressure</td>
<td>74.8 72.7 69.2</td>
<td>0.29 0.12</td>
<td>75.1 72.8 78.9</td>
</tr>
<tr>
<td>(mmHg) (16.1) (14.6) (13.4)</td>
<td>(14.6) (15.8) (17.6)</td>
<td>(15.5) (15.0) (15.0)</td>
<td></td>
</tr>
<tr>
<td>Fasting cholesterol</td>
<td>6.8 6.5 6.2</td>
<td>0.32 0.16</td>
<td>7.0 7.2 6.2</td>
</tr>
<tr>
<td>(mmol/l) (1.2) (1.2) (1.2)</td>
<td>(1.2) (1.2) (1.2)</td>
<td>(1.2) (1.2) (1.2)</td>
<td></td>
</tr>
<tr>
<td>Fasting TG</td>
<td>1.5 1.4 1.3</td>
<td>0.41 0.19</td>
<td>1.2 1.4 1.0</td>
</tr>
<tr>
<td>(mmol/l) (1.7) (1.7) (1.5)</td>
<td>(1.6) (1.5) (1.4)</td>
<td>(1.7) (1.6) (1.5)</td>
<td></td>
</tr>
<tr>
<td>Fasting fibrinogen</td>
<td>309.5 293.7 282.9</td>
<td>0.28 0.22</td>
<td>302.9 283.8 267.1</td>
</tr>
<tr>
<td>(g/l) (1.2) (1.2) (1.2)</td>
<td>(1.2) (1.1) (1.1)</td>
<td>(1.2) (1.2) (1.2)</td>
<td></td>
</tr>
</tbody>
</table>

Mean values of each genotype groups are shown; standard deviations (SD) are given in parentheses. Geometric means and SDs were used for glucose, insulin, cholesterol, triglyceride, and fibrinogen values. p Values are on 2 df from ANOVA and 1 df from regression on allele unadjusted unless mentioned. The mentioned analysis was adjusted for gender.
with height.44 The CC genotype also associates with a lower glucose level at all points in OGTT by about 0.5 mmol/l, and (non-significant) triglyceride and cholesterol by about 0.2–0.3 mM each. However, the pattern for insulin levels in OGTT differs between males and females. These findings add to the observations of metabolic associations for the \textit{ACE} I/D polymorphism, and implicate the diversity of the RAS pathway more generally in influencing anthropometric and metabolic traits. A number of studies have observed metabolic effects for \textit{ACE} I/D.26–30 A study by Strazzullo \textit{et al}9 on a wide age range of men working at the Olivetti factory in southern Italy observed that ACE DD was associated with overweight and abdominal obesity and blood pressure but did not find similar associations for A1166C. The basis of negative finding for A1166C in their study compared with ours remains obscure although the age range, method of ascertainment, and environment and genetic background all differ. A small study46 of a wide age range of both sexes of American white and black subjects.51 One of these haplotypes showed that there are two main haplotype blocks in AGTR1 located 0.1–0.8 cM from genin, and transmembrane 4 superfamily number 1 and 4 are newly characterised.

Syntenic genes include pancreatic carboxypeptidase B1 precursor, mast cell carboxypeptidase A3 precursor, glyco- genin, and transmembrane 4 superfamily number 1 and 4 are located 0.1–0.8 cM from \textit{AGTR1} (International HapMap Project: http://www.hapmap.org/). The lack of significant

![Figure 2](http://www.hapmap.org/) AGTR1 transcript (Ensembl Genome Browser: ENSST00000326871). A1166C (M), two putative zip codes55 responsible for localisation of mRNA in β-actin (underlined), and A-U motifs (italics), capable of reacting with some trans-acting elements, are represented. An RNA-binding protein (RNAbp) interacts with the 3' UTR of the AGTR1.55

No LD was detected between A1166C and SNPs in the 5' UTR and promoter region (G-2228A, C-1424G, T-810A, T-713G, G-521T, A-214C, G-213C, and A-153G) and T55C in exon 4 of the \textit{AGTR1} gene.47 However, Lajemi \textit{et al}56 found an additive effect of 1166C and -153G on aortic stiffness, and Jin \textit{et al}49 reported the possible association of A1166C in the \textit{AGTR1} promoter with some other functional marker(s) located elsewhere in the \textit{AGTR1} gene or within a nearby gene that could explain the observed associations of this SNP with cardiovascular and metabolic phenotypes.

While the mechanism of \textit{AGTR1} A1166C genotype-phenotype associations remain uncertain, this study suggests that in addition to effects on vascular function, \textit{AGTR1} A1166C can influence anthropometric and metabolic traits, providing further evidence of the integral effects of this gene and genotype on cardiovascular risk traits.

Angiotensin II has widespread effects on different organs of the body. The expression of \textit{AGTR1} and \textit{AGTR2} in different tissues such as the adrenal cortex, kidney, and rat uterus has been reported. The former is the predominant form in vascular smooth muscle and the human uterus, whereas the latter is expressed more predominantly in the adrenal medulla and brain.53 Giachetti \textit{et al}54 reported the expression of angiotensin, and \textit{ACE} and \textit{AGTR1} genes in visceral and subcutaneous adipose tissue. The effect of haplotype(s) distinguished by A1166C at the mRNA level and splicing and receptor quantity or quality are as yet unknown. \textit{AGTR1} pharmacological blockade lowers the risk of type 2 diabetes and is also known to promote adipocyte differentiation and insulin sensitivity.57

Our study suggests that, like the \textit{ACE} genotype, the \textit{AGTR1} genotype may also influence metabolic as well as vascular phenotypes and invites investigation of both \textit{AGTR1} and the whole RAS pathway with respect to metabolic traits.

Authors’ affiliations

M R Abdollahi, T R Gaunt, S Ye, I N M Day, Human Genetics Division, Duthie Building, Southampton General Hospital, Tremena Rd, Southampton, SO16 6YD, UK

www.jmedgenet.com

We thank the UK MRC and BHF for support. MRA is an Iranian Ministry of Health PhD Scholar.

Competing interests: none declared

REFERENCES

Clinical Evidence—Call for contributors

Clinical Evidence is a regularly updated evidence-based journal available worldwide both as a paper version and on the internet. Clinical Evidence needs to recruit a number of new contributors. Contributors are healthcare professionals or epidemiologists with experience in evidence-based medicine and the ability to write in a concise and structured way.

Areas for which we are currently seeking authors:

- Child health: nocturnal enuresis
- Eye disorders: bacterial conjunctivitis
- Male health: prostate cancer (metastatic)
- Women’s health: pre-menstrual syndrome; pyelonephritis in non-pregnant women

However, we are always looking for others, so do not let this list discourage you.

Being a contributor involves:

- Selecting from a validated, screened search (performed by in-house Information Specialists) epidemiologically sound studies for inclusion.
- Documenting your decisions about which studies to include on an inclusion and exclusion form, which we keep on file.
- Writing the text to a highly structured template (about 1500–3000 words), using evidence from the final studies chosen, within 8–10 weeks of receiving the literature search.
- Working with Clinical Evidence editors to ensure that the final text meets epidemiological and style standards.
- Updating the text every six months using any new, sound evidence that becomes available. The Clinical Evidence in-house team will conduct the searches for contributors; your task is simply to filter out high quality studies and incorporate them in the existing text.
- To expand the topic to include a new question about once every 12–18 months.

If you would like to become a contributor for Clinical Evidence or require more information about what this involves please send your contact details and a copy of your CV, clearly stating the clinical area you are interested in, to Klara Brunnhuber (kbrunnhuber@bmjgroup.com).

Call for peer reviewers

Clinical Evidence also needs to recruit a number of new peer reviewers specifically with an interest in the clinical areas stated above, and also others related to general practice. Peer reviewers are healthcare professionals or epidemiologists with experience in evidence-based medicine. As a peer reviewer you would be asked for your views on the clinical relevance, validity, and accessibility of specific topics within the journal, and their usefulness to the intended audience (international generalists and healthcare professionals, possibly with limited statistical knowledge). Topics are usually 1500–3000 words in length and we would ask you to review between 2–5 topics per year. The peer review process takes place throughout the year, and our turnaround time for each review is ideally 10–14 days.

If you are interested in becoming a peer reviewer for Clinical Evidence, please complete the peer review questionnaire at www.clinicalevidence.com or contact Klara Brunnhuber (kbrunnhuber@bmjgroup.com).