Classification of BRCA1 missense variants of unknown clinical significance

C M Phelan, V Dapić, B Tice, R Favis, E Kwan, F Barany, S Manoukian, P Radice, R B van der Luijt, B P M van Nesselrooij, G Chenevix-Trench, kConFab, T Caldes, M de la Hoya, S Lindquist, S V Tavtigian, D Goldgar, Å Borg, S A Narod, A N A Monteiro

Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast-ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk.

Objective: To investigate a panel of missense variants.

Methods and results: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396–1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated.

Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability.

Individuals carrying inactivating germline mutations in the breast and ovarian cancer susceptibility gene BRCA1 have an increased risk of developing cancer, making it essential to identify those at risk. This task is complicated by the presence of over 1000 different BRCA1 alleles in the population carrying nonsense, missense, frameshift mutations as well as large and small deletions (Breast Cancer Information Core, BIC: http://research.nhgri.nih.gov/bic/). Progress has been made recently in identifying which alleles are likely to be associated with disease. Several lines of evidence derived from population based analysis and functional studies indicate that all mutations leading to premature termination are associated with increased cancer susceptibility. However, missense mutations still pose an important problem for risk assessment because of their low frequency and, in some cases, ethnic specificity, which make population based studies difficult. Over 300 missense sequence variants have been identified in BRCA1, located throughout the gene (BIC database). In breast-ovarian cancer families in which a missense variant is the only sequence alteration detected, it is difficult to determine whether the variant is causally linked to predisposition or not and so it is uninformative for predictive testing purposes.

Functional studies in which specific activities of the protein or broad biological phenotypes are assayed have contributed to the classification of missense variants. When integrated with population based studies, functional tests can be a powerful method to help characterise these mutants. BRCA1 is involved in maintaining genomic stability and participates in the DNA damage response, but its biochemical functions have remained elusive. The BRCA1 protein contains several motifs and structural domains that have been functionally characterised or, in some cases, inferred from sequence analysis and prediction. A zinc binding RING finger, which binds the BRCA1 associated RING domain protein BARD1 is present at the N-terminal region (aa 24–64). The BRCA1–BARD1 complex behaves as an E3 ubiquitin ligase. Cancer associated missense mutations that are located in this region disrupt BRCA1–BARD1 interaction and affect its in vitro ubiquitination activity. At the C-terminus, two BRCT domains in tandem (BRCT-N: aa 1653–1736; BRCT-C: aa 1760–1855) display a transcription activation function when fused to a heterologous DNA binding domain and mediate the interaction of BRCA1 with the RNA polymerase II holoenzyme. BRCT domains are protein–protein interaction domains found in proteins involved in DNA repair and cell cycle control. Mutations that result in the truncation or structural alteration of the BRCT segment have been identified in hereditary breast-ovarian cancer families, showing the essential nature of this portion of the gene (BIC database). Importantly, cancer associated missense mutations located at the BRCT domains abolish its transcription activity in an artificial system.

The strong correlation between cancer association and disruption of a certain biochemical function, even though determined in an artificial system, suggest that specific biochemical tests are powerful tools to characterise these variants.

We and others have characterised several missense variants located at the BRCT domains using a transcription activation assay. While the published data on BRCA1 suggest a (direct or indirect) function in transcription, it is unlikely that BRCA1 represents a bona fide transcriptional activator. Our working model is that the transcription assay is
a monitor of the integrity of the C-terminal domain of BRCA1 and therefore can be used to derive functional information. Along those lines, we hypothesised that unclassified missense variants located in regions of BRCA1 that contribute to transcription activation besides the BRCT domains might be amenable to a transcription based classification. In the present study we show that the transcriptional activation assay can be used as a test to characterise mutations in the region encompassing aa 1396–1863 (exons 13 to 24) and we specifically investigated 13 missense variants (H1402Y, L1407P, H1421Y, M1614S, M1628T, M1628V, T1685I, T1700A, T1720A, A1752P, G1788V, V1809F, and W1837R). In addition, we analysed all the mutations using a prediction algorithm based on interspecific sequence variation and Grantham matrices. 23 Pedigrees were also analysed for segregation analysis, and posterior probabilities were calculated to determine the odds of causality for each variant. Finally, co-occurrence of the variant with other known deleterious mutations was taken into account. These results were combined with previously published results derived from methods including a prediction algorithm based on general protein structure parameters that evaluates the impact on function for mutations at the BRCT domain, 24 and a protease based assay. 25 This integrated approach provided us with a cross validated scheme to classify variants as well as to identify the strengths and limitations of current methods.

METHODS

Constructs

Wild type GAL4 DNA binding domain (DBD) fusion construct aa 1560–1863 of human BRCA1 in pGBT9 (Clontech) was previously described. 3 The following wild type BRCA1 fragments were amplified by polymerase chain reaction (PCR) using the plasmid pCBRCA1–385 (a gift from Michael Erdos, National Human Genome Research Institute) as a template and the following nucleotide primers that evaluates the impact on function for mutations at the BRCT domain, 24 and a protease based assay. 25 This integrated approach provided us with a cross validated scheme to classify variants as well as to identify the strengths and limitations of current methods.

The yeast expressing vector pLex9 carrying a wild type BRCA1 sequence (aa 1396–1863) fused in frame to the LexA DNA binding domain (DBD) was used as wild type control and as a backbone to introduce the mutations described in table 1 by site directed mutagenesis using the following methods. Mutations S1613G, A1708E, M1775R, and Y1853X were subcloned from previously described constructs. 5 6 7

The yeast expressing vector pLex9 carrying a wild type BRCA1 sequence (aa 1396–1863) fused in frame to the LexA DNA binding domain (DBD) was used as wild type control and as a backbone to introduce the mutations described in table 1 by site directed mutagenesis using the following methods. Mutations S1613G, A1708E, M1775R, and Y1853X were subcloned from previously described constructs. 5 6 7

Two Saccharomyces cerevisiae strains were used: EGY48 [MATa, ura3, trpl, his3, 6 lexA operator-LEU2] and SFY526 [MATa, ura 3-52, his3-200, ade 2-101, lys s-801, trp 1-901, leu 2-3, 112, can2, gal 4-542, gal 80-538, URA3::GAL1-lacZ]. 22 SFY526 cells contain a lacZ reporter gene under the control of GAL1 UAS, which is recognised by GAL1 DNA binding domain (DBD). EGY48 cells were transformed with plasmid reporters.

Transcription assay in yeast

Classification of BRCA1 missense variants of unknown clinical significance

Downloaded from http://jmg.bmj.com/ on May 29, 2017 - Published by group.bmj.com
pSH18–34, pJK103, or pRB1840 which contain a lacZ gene under the control of eight, two, and one LexA operators, respectively.27 28 Competent yeast cells were obtained using the yeast transformation system based on lithium acetate (Clontech) and cells were transformed according to the manufacturer’s instructions. At least three individual EGY48 or SFY526 clones for each variant were tested for liquid β-galactosidase assays using ONPG,29 and the assays were carried out in triplicate. The β-galactosidase activity was noted as a comparison to wild type BRCA1 and S1613G (positive controls) or to A1708E, M1775R, and Y1853X (negative controls). Western blot analysis was carried out as previously described.4

Transcription assay in mammalian cells

We used pGS5Luc, which contains a firefly luciferase gene under the control of five GAL4 binding sites, as a reporter for the assay. Transfections were normalised with an internal control phGR-TK (Promega), which contains a Renilla luciferase gene under a constitutive TK basal promoter using a dual luciferase system. Human 293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 5% calf serum and plated in 24-well plates the day before transfection. Transfections were done in triplicate using Fugene 6 (Roche) and harvested 24 hours post-transfection. Cells were lysed in RIPA buffer (150 mM NaCl, 10 mM Tris-Cl pH 7.4, 5 mM EDTA, 0.1% sodium dodecyl sulphate, 1% Triton X-100, 0.1% sodium deoxycholate). The blots were incubated with α-GAL4 DBD monoclonal antibody (Clontech). Lysates were cleared and samples were separated on 10% SDS-PAGE; equal amounts of protein were loaded for every sample. Gels were electroblotted on a membrane and probed with an α-LexA DBD monoclonal antibody (Clontech). The location of the 13 missense variants studied as well as the position of exons 13 to 24 to activation.

Functional analysis of missense variants

The location of the 13 missense variants studied as well as the negative and positive controls are indicated by arrows in fig 2A. Seven variants lie in the BRCT domains. Six of the variants lie upstream of the BRCT domains, three of which lie within the putative coiled coil domain (fig 2A). Three known BRCT deleterious/high risk variants—A1708E, M1775R, and Y1853X—were used as negative (that is, loss of function) controls, and S1613G (a common neutral polymorphism) and wild type BRCA1 (aa 1396–1863) were used as positive controls. Results show that both in yeast and mammalian cells the three negative controls located in the BRCT domain lose most of transcription activation function consistent with a loss of function mutation, whereas the positive control S1613G had an activity equal to or higher than the wild type, as observed previously30 (fig 2B and 2C). Seven unclassified missense variants in the BRCT domains (T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were then tested. Variants T1685I, A1752P, G1788V, V1809F, and W1837R showed greatly decreased transcription activation function.
levels (at least <50%) both in yeast and mammalian cells, comparable with the known mutant controls and consistent with their classification as deleterious/high risk variants (fig 2B and 2C).

Variants G1706A and T1720A showed slightly reduced transcription activation levels in yeast cells, at 64% and 74%, respectively, of the wild type control. Interestingly, whereas T1720A had activity comparable to wild type in mammalian cells, G1706A showed a markedly reduced activity. The intermediate results for these mutants suggest that they may represent moderate rather than high risk variants.

Six additional variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, and M1628V) in locations outside the BRCT domains were also investigated for their effect on transcription. Three of the variants were located in a region in which a putative coiled coil domain has been predicted to form (fig 2A). Variant L1407P showed significantly reduced transcription activation levels consistent with a high risk mutation (fig 2B, 2C). Variants H1402Y, H1421Y, and S1512I showed transcription activation levels equal to or higher than wild type BRCA1, suggesting that they do not represent high risk variants and are likely to have low clinical significance.

In yeast cells, protein levels were slightly variable in three independent clones. Most variants displayed levels comparable to wild type, with the exception of Y1853X and T1685I, which showed markedly reduced levels suggesting that protein instability might be the underlying cause of loss of function. In mammalian cells, some variants (S1512I, V1809F, and W1837R) had markedly reduced levels. However, no loss of function variant showed consistently reduced levels in yeast and mammalian cells, suggesting that even when expressed at higher levels they were unable to activate transcription (fig 2D).

Pedigree analysis

In order to obtain additional information to classify the missense variants we applied a recently developed full likelihood method for the evaluation of causality from family data. For the analysis of co-segregation we assumed an allele frequency of the variant of 0.0001 and a penetrance model with separate age specific risks of breast and ovarian cancer for BRCA1 based on meta-analysis estimates. We obtained six pedigrees for five variants (M1628T, G1706A, T1720A, V1809F, and W1837R) (fig 3). For M1628T we obtained odds against causality of 10.4:1, consistent with the data obtained in the functional assay. For G1706A we obtained odds against causality of 1.3:1. This rather uninformative result reflects the fact that this large pedigree with multiple cases typed had one case diagnosed at age 53 that did not carry the variant. This result may also reflect the
fact that G1706A may be a moderate rather than a high risk variant. For variant V1809F the odds in favour of causality were 7.3:1, consistent with the functional test, suggesting that it is a high risk variant. Two pedigrees were analysed for the T1720A variant generating combined odds against causality of 355:1. This result is also consistent with the functional data and suggests that T1720A represents a neutral/low clinical significance variant. For variant W1837R we obtained odds of 4:1 against causality, which contradicts our functional data.

Analysis of interspecific sequence variation

In order to determine further the likelihood that a particular variant may or may not represent a high risk variant we also analysed the amino acid substitution using a modified Grantham matrix, adapted for BRCA1. These results are shown in table 1. The classification based on interspecific sequence variation confirms our choice of controls, with S1613G being classified as neutral and M1775R, A1708E, and Y1853X being classified as deleterious. It also confirms our functional results for H1402Y, L1407P, T1685I, G1706A, G1788V, and W1837R. Variant M1628V, however, was classified as a neutral/low risk variant in contradiction of our functional results. The remaining variants could not be classified by this method.

Co-occurrence with deleterious mutations

Homozygous disruption of *Brca1* in mouse resulted in embryonic lethality (reviewed by Brodie and Deng). In addition, there is a deficit from expected numbers of *BRCA1* homozygotes and compound heterozygotes for deleterious mutations among individuals with the founder mutations 185delAG and 5382insC. This led to the notion that if an unknown variant co-occurs with a known deleterious mutation it is unlikely that this variant is a high risk one. Co-occurrence data relative to a set of 40 000 individuals (kindly provided Amie Deffenbaugh, Myriad Genetics Laboratories Inc) are listed in table 1. Variants H1402Y, S1512, and M1628T co-occur with a deleterious mutation and are therefore unlikely to represent high risk variants, a result supported by the functional assays.

DISCUSSION

In order to provide a more informative risk assessment for individuals carrying a mutation in *BRCA1* we used several approaches, including association studies and segregation analysis.
analysis. However, the clinical relevance of missense variants has been particularly elusive because of their low frequency, making it difficult to conduct meaningful population based studies. Several lines of investigation must be considered in the classification of a BRCA1 variant into deleterious/high risk or neutral/low clinical significance.\(^3\)\(^6\) The occurrence of the variant in high risk individuals (affected by breast or ovarian cancer and with a family history of breast or ovarian cancer) compared with controls can provide clues as to its significance variant. At this point we cannot classify variant T1720A as a neutral/low clinical significance variant. The two remaining variants had intermediate results. G1706A showed a slightly reduced activity in yeast but a markedly reduced activity in mammalian cells. Variant T1720A had a slightly reduced activity in yeast and but activity comparable to wild type BRCA1, suggesting they are probably neutral/low clinical significance variants. The two remaining variants had intermediate results. G1706A showed a slightly reduced activity in yeast but a markedly reduced activity in mammalian cells. Variant T1720A had a slightly reduced activity in yeast and but activity comparable to wild type BRCA1 in mammalian cells. Based on the results obtained we would tentatively classify T1720A as a neutral/low clinical significance variant. At this point we cannot classify variant G1706A.

![Figure 3 Pedigrees of missense variants in BRCA1.](http://jmg.bmj.com/)

Figure 3 Pedigrees of missense variants in BRCA1. The presence (M) or absence (WT) of the variants in the germ line of tested individuals is indicated. Affected individuals are denoted by a black circle or square; site of tumour and age of diagnosis are also indicated.

We then carried out an analysis using interspecific variation, pedigree analysis, and co-occurrence data (table 1). Of the seven variants for which the method based on interspecific variation was able to reach a conclusion, the data confirmed the classification based on our functional tests in six cases (L1407P, H1402Y, T1685I, G1706A, G1788V, and W1837R) but presented a contradiction for variant M1628V. The pedigree analysis confirmed our results for
Table 1 Comprehensive analysis of BRCA1 variants

<table>
<thead>
<tr>
<th>Exon</th>
<th>Mutation</th>
<th>Nucleotide change*</th>
<th>Allowed residues†</th>
<th>TXN¶</th>
<th>IVI</th>
<th>PDG¶</th>
<th>PS**</th>
<th>ST††</th>
<th>BIC‡‡</th>
<th>CO§§</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>H1402Y</td>
<td>C4323T</td>
<td>HDYNK</td>
<td>○</td>
<td>○</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>1</td>
<td>1</td>
<td>Reduces the probability to form coiled coil structure from 0.936 to 0.532</td>
</tr>
<tr>
<td>13</td>
<td>L1407P</td>
<td>T4339C</td>
<td>L</td>
<td>●</td>
<td>?</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>1</td>
<td>0</td>
<td>Conserved stretch; reduces the probability to form coiled coil structure from 0.936 to 0.037</td>
</tr>
<tr>
<td>13</td>
<td>H1421Y</td>
<td>C4380T</td>
<td>HRK</td>
<td>○</td>
<td>?</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>2</td>
<td>0</td>
<td>Reduces the probability to form coiled coil structure from 0.936 to 0.650</td>
</tr>
<tr>
<td>15</td>
<td>S1512I</td>
<td>G4654T</td>
<td>SGCA</td>
<td>○</td>
<td>?</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>50</td>
<td>14</td>
<td>Allele frequency comparable in control and in breast-ovarian cancer cases; clinical data favour classification as benign polymorphism</td>
</tr>
<tr>
<td>16</td>
<td>S1613G</td>
<td>A4956G</td>
<td>SNF</td>
<td>○</td>
<td>○</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>33</td>
<td>371</td>
<td>Allele frequency comparable in control and breast-ovarian cancer cases; commonly found in the Japanese group used as controls; clinical data favour classification as benign polymorphism</td>
</tr>
<tr>
<td>16</td>
<td>M1626V</td>
<td>A5001G</td>
<td>MVSR</td>
<td>●</td>
<td>○</td>
<td>nd</td>
<td>na</td>
<td>na</td>
<td>4</td>
<td>0</td>
<td>Commonly found in the Japanese group used as controls; clinical data favour classification as benign polymorphism</td>
</tr>
<tr>
<td>17</td>
<td>T1489I</td>
<td>C5173T</td>
<td>T</td>
<td>●</td>
<td>●</td>
<td>nd</td>
<td>nd</td>
<td>●</td>
<td>2</td>
<td>0</td>
<td>Found in a case with bilateral breast cancer at 41/46 y; her mother was disease-free, but grandmother and grandmother’s sister had breast cancer at 55 and 85 y, respectively</td>
</tr>
<tr>
<td>18</td>
<td>G1706A</td>
<td>G5236C</td>
<td>TXN</td>
<td>○</td>
<td>○</td>
<td>nd</td>
<td>nd</td>
<td>●</td>
<td>2</td>
<td>0</td>
<td>Found in a case with bilateral breast cancer at 41/46 y; her mother was disease-free, but grandmother and grandmother’s sister had breast cancer at 55 and 85 y, respectively</td>
</tr>
<tr>
<td>18</td>
<td>A1708E</td>
<td>C5242A</td>
<td>A</td>
<td>●</td>
<td>●</td>
<td>na</td>
<td>●</td>
<td>●</td>
<td>39</td>
<td>0</td>
<td>Known unfolding mutation; no detectable activity in transcription assays or small colony phenotype test; clinical data favour classification as deleterious mutation; was used as negative control in transcription assays</td>
</tr>
<tr>
<td>19</td>
<td>T1720A</td>
<td>A5277G</td>
<td>TIVS</td>
<td>●</td>
<td>?</td>
<td>●</td>
<td>●</td>
<td>12</td>
<td>0</td>
<td>Found in an early onset breast tumour, the mutant allele (present in the germline) was absent in control population and was retained in the tumour; clinical data favour classification as deleterious mutation; was used as negative control in transcription assays</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>A1752P</td>
<td>G5373C</td>
<td>AS</td>
<td>●</td>
<td>?</td>
<td>nd</td>
<td>●</td>
<td>3</td>
<td>na</td>
<td>Surgical excision and DNA analysis performed on one unaffected proband’s father also had breast cancer at 55 and 85 y, respectively</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>M1775R</td>
<td>T5443G</td>
<td>M</td>
<td>●</td>
<td>●</td>
<td>na</td>
<td>●</td>
<td>●</td>
<td>23</td>
<td>0</td>
<td>Truncating mutation that destabilises the BRCT domains; clinical data favour classification as deleterious mutation; was used as negative control in transcription assays</td>
</tr>
<tr>
<td>22</td>
<td>G1788V</td>
<td>G5482T</td>
<td>G</td>
<td>●</td>
<td>●</td>
<td>nd</td>
<td>●</td>
<td>●</td>
<td>15</td>
<td>0</td>
<td>Found in a bilateral breast and ovarian cancer case with family history</td>
</tr>
<tr>
<td>23</td>
<td>V1809F</td>
<td>G5644T</td>
<td>VIL</td>
<td>●</td>
<td>●</td>
<td>?</td>
<td>●</td>
<td>●</td>
<td>4</td>
<td>0</td>
<td>Found in an early onset breast tumour; the mutant allele (present in the germline) was absent in control population and was retained in the tumour; segregates with disease</td>
</tr>
<tr>
<td>24</td>
<td>W1837R</td>
<td>T5628C</td>
<td>W</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>●</td>
<td>5</td>
<td>0</td>
<td>Found in an early onset breast cancer case. Proband’s father also had breast cancer and the mutation was found to segregate with disease</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Y1853X</td>
<td>C5677A/G</td>
<td>Y</td>
<td>●</td>
<td>●</td>
<td>na</td>
<td>●</td>
<td>●</td>
<td>10</td>
<td>0</td>
<td>Truncating mutation that destabilises the BRCT domains; clinical data favour classification as deleterious mutation; was used as negative control in transcription assays</td>
</tr>
</tbody>
</table>

* Nucleotide numbering corresponds to human BRCA1 cDNA deposited in GenBank accession number U14680.
† Amino acid residues present at the same position in the BRCA1 ortholog. The multiple sequence alignment of orthologous BRCA1 BRCT domains from eight species, including Homo sapiens (GenBank accession number U14680), Pan troglodytes (AF207822), Mus musculus (U68174), Rattus norvegicus (AF036760), Gallus gallus (AF355273), Canis familiaris (U50709), Bos Taurus (AF416868), and Tetraodon nigroviridis (AY428536), was obtained by using program MegAlign (Clustal W).
¶ Transcription assays.
† Interspecific variation.
‡ Pedigree analysis.
** Protease sensitivity; data from Williams et al.††
†† Structure based prediction; data from Mirkovic et al.‡‡
§‡ Number of times this variant has been reported to the BIC database as of August 2004.
§§ Number of times this variant has been observed co-occurring with a known deleterious BRCA1 mutation in 40 000 samples (Myriad Genetics Laboratories).
* According to prediction by the Paircoil scoring form (http://paircoil.lcs.mit.edu/cgi-bin/paircoil)††.
○ neutral/low clinical relevance; ● moderate to low risk variant; ● deleterious/high risk variant; nd, not determined; no, not applicable; ?, undetermined.

three the four variants analysed. Results from pedigree analysis for W1837R contradicted all the other methods, although the odds against causality were rather small. Interestingly, results for G1706A suggested again that the available information is not enough to classify it. While no conclusion can be drawn for variants that have very low frequency and are not found to co-occur with a deleterious mutation (for example, L1407P and H1421Y), co-occurrence data indicated that H1402Y, S1512, and M1628T do not represent high risk variants, confirming the functional assay results.

In order to further cross validate our analysis we compared it with results from three published methods to classify variants in the BRCT domain (table 1). The first method is
based on the fact that variants that cause conformation changes are more likely to be prone to proteolytic degrada-
tion. For all five of the variants analysed by this method (T1720A, A1752P, G1788V, V1809F, and W1837R), protease sensitivity correlated with abolition of transcrip-
tional activation. We also compared our data with results derived from a method based on protein structure parameters to predict the outcome of different variants of BRCA1. For the seven variants for which there is a prediction, six (T1685I, G1706A, T1720A, A1752P, G1788V, and W1837R) confirmed the results obtained. In fact, the G1706A variant was considered not explained by the algorithm because the qualitative yeast data used to test for G1706A indicated wild
type function while the algorithm predicted a functional impact. It is possible that G1706A may represent a moderate/
low risk variant and our current methods are not yet powerful enough to recognise this variant. Variant V1809F was
contradictory; however, given that fact that pedigree analysis, transcriptional activation, and protease sensitivity indicate a high risk variant, our conclusion is that, although the change is a conservative one, the side chain size threshold in the algorithm needs to be refined. In summary, we have classified six missense variants (L1407P, M1628V, T1685I, A1752P, G1788V, and V1809F) as probable deleterious/high risk variants and the remainder as probable neutral/low clinal significance variants (H1402Y, H1421Y, S1512L, M1628T, and T1720A), with two variants (G1706A and W1837R) left unclassified.

Previously, all the known deleterious missense changes were in the RING domain or BRCT repeats. Although further work is needed to classify variants L1407P and M1628V unambiguously, our results provide evidence that other regions or motifs are likely to harbour high risk missense substitutions. In particular, classification of L1407P as a high risk variant suggests an important function for the putative coiled coil motif as previously suggested. The 4-3 spacing of hydrophobic residues in the coiled coil is clearly evolutionarily conserved through the puffer fish BRCA1 (Tetraodon, accession AY428536).

Conclusions

While individual classification schemes for BRCA1 alleles still present limitations and no single method can reliably be used alone, a combination of several methods may provide a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here pushes our understanding of these variants further towards clinical applicability in the near future.

ACKNOWLEDGEMENTS

We thank Qun Wang for excellent technical assistance and Barbara Pasini (University of Torino) for additional pedigree information. This work was supported by AMDeC Foundation of New York City (FB), US Army awards DAMD17-00-1-0478 (CMP), DAMD17-99-1-9389 (ANAM), NIH CA92309 (ANAM), CAM 8.1/0018.1/03 (TC), Italian Association and Foundation for Cancer Research (PR1), and the Italian Ministry of Health (Ricerca Finalizzata 2002; PR). VD is a postdoctoral fellow of the New York State Board of Health and Education. KConFaB (a list of members can be found at http://www.kconfab.org/organisation/members.aspx) has been funded by the Kathleen Cunningham Foundation, National Breast Cancer Foundation, National Health and Medical Research Council (NHMRC), Cancer Council of Victoria, Cancer Council of South Australia, Queensland Cancer Fund, Cancer Council of New South Wales, Cancer Foundation of Western Australian, and Cancer Council of Tasmania.

REFERENCES

Authors’ affiliations

C M Phelan*, S A Narod, E Kwon, Center for Research in Women’s Health, Women’s College Hospital, Toronto, Ontario, Canada

Classification of BRCA1 missense variants of unknown clinical significance

C M Phelan, V Dapic, B Tice, R Favis, E Kwan, F Barany, S Manoukian, P Radice, R B van der Luijt, B P M van Nesselrooij, G Chenevix-Trench, T Caldes, M de La Hoya, S Lindquist, S V Tavtigian, D Goldgar, A Borg, S A Narod and A N A Monteiro

doi: 10.1136/jmg.2004.024711

Updated information and services can be found at:
http://jmg.bmj.com/content/42/2/138

These include:

Supplementary Material
Supplementary material can be found at:
http://jmg.bmj.com/content/suppl/2006/05/30/42.2.138.DC1

References
This article cites 56 articles, 32 of which you can access for free at:
http://jmg.bmj.com/content/42/2/138#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Breast cancer (239)
Molecular genetics (1254)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/