Online Mutation Report

Common origin of the Val30Met mutation responsible for the amyloidogenic transthyretin type of familial amyloidotic polyneuropathy

H Ohmori, Y Ando, Y Makita, Y Onouchi, T Nakajima, M J M Saraiva, H Terazaki, O Suhr, G Sobue, M Nakamura, M Yamaizumi, M Munar-Ques, I Inoue, M Uchino, A Hata

The amyloidogenic transthyretin (TTR) type of familial amyloidotic polyneuropathy (FAP [MIM 176300], http://www.ncbi.nlm.nih.gov/Omim/) is the most common form of hereditary systemic amyloidosis.\(^1\)\(^-\)\(^3\) It is well known that amyloidogenic TTR resulting from gene mutations is a major constituent of amyloid deposits in tissues of patients with FAP.\(^4\) To date, more than 80 mutations of the TTR gene have been associated with human amyloidosis.\(^5\) Of those mutations, a mutation changing valine at amino acid 30 to methionine (Val30Met) is the most common,\(^6\)\(^-\)\(^9\) and only patients with this mutation are found in large foci throughout the world.\(^1\)\(^-\)\(^4\)

The clinical manifestations of the TTR Val30Met type of FAP in Japan and Portugal are as follows: (1) the disorder is inherited as an autosomal dominant trait with equal sex distribution and high penetrance; (2) the age at onset is late twenties to early forties; (3) polyneuropathy with sensory dissociation starts in the legs and progresses in an ascending fashion; (4) manifestations of various autonomic dysfunctions such as severe orthostatic hypotension, disturbed bowel movement with constipation and diarrhoea, impotence, and urinary incontinence invariably appear during the course of the disease; and (5) amyloid deposition in loco causes dysfunction of various organs.\(^1\)\(^-\)\(^3\) In contrast, the clinical profile of Swedish patients is different: the average age at onset is the middle fifties, and penetrance of the disease is very low. Also, the disease progresses more slowly in Swedish patients than in Japanese and Portuguese patients.\(^2\)\(^-\)\(^3\)

The disorder was first described in Portugal in 1952.\(^2\) In the 1960s, large foci of patients were found in Japan and Sweden.\(^9\)\(^-\)\(^10\) In Japan, two large foci of TTR Val30Met type FAP exist: one in Kumamoto prefecture of Kyushu, and the other in Nagano prefecture on the Mainland of Japan.\(^1\) However, these two foci are geographically distant, and a consanguineous relationship between the foci has not been identified. The issue of whether there is a common origin for a mutant allele in the two foci has not been resolved. Furthermore, Continho\(^11\) hypothesised that a mutant allele in the Portuguese kindred could be the origin of the mutation for FAP foci throughout the world, including Japan, Europe, North and South America, and Africa. This hypothesis was based only on well-known historical bonds, and thus far it has not been scientifically tested.

Recently, estimation of haplotype in the absence of DNA of related individuals became possible by means of the maximum-likelihood method algorithm.\(^12\) In addition, the human genome project has continuously provided human genome resources. Almost 200,000 reliable single-nucleotide polymorphisms (SNPs) for the entire genome of the Japanese population are now available (IMS JSNP database, http://snp.ims.u-tokyo.ac.jp/index.html). Microsatellite information is now also available (GenBank, http://www.ncbi.nlm.nih.gov/Entrez/); assay of this information provides a powerful method for determining the origin of the gene because heterozygosity is usually much higher than that for SNPs. Statistical software can be used to construct a haplotype by using SNPs and microsatellite information together (Arlequin, http://lgb.unige.ch/arlequin/). Thus, we decided to reanalyse the origin of Val30Met mutation with the newly developed methods and resources.

We first collected DNA samples from five foci—two foci in Japan and one each in Portugal, Majorca Island (Spain), and Sweden—and then analysed haplotype structures with four SNPs and five microsatellite markers covering a 215 kb TTR gene region. We observed major haplotypes close to 50% in two major foci in Japan, indicating the existence of a common founder. By comparing haplotype among foci, we obtained results indicating that there could be a common founder for Japanese and Portuguese patients, and for Portuguese and Spanish patients, but not for Swedish or other patients.

These data, plus the history of 16th century trade, lead to the plausible hypothesis of a mutant allele of a Portuguese kindred being the origin of the mutation in most Japanese FAP patients.

Key points

- Our work aimed to identify the origin of Val30Met mutation, responsible for the amyloidogenic transthyretin (TTR) type of familial amyloidotic polyneuropathy (FAP) found in Japan and Europe as foci.
- We analysed the TTR gene haplotype of FAP patients from Japan, Portugal, Spain, and Sweden, and of Japanese and Caucasian control subjects with four single nucleotide polymorphisms (SNPs) and five microsatellite markers in the neighbouring gene region, spanning 215 kb (loci 1–9).
- We observed that the disease-causing haplotype is the same in two major foci in Japan, indicating the existence of a common founder.
- By comparing haplotype among foci, we obtained results indicating that there could be a common founder for Japanese and Portuguese patients, and for Portuguese and Spanish patients, but not for Swedish or other patients.
- These data, plus the history of 16th century trade, lead to the plausible hypothesis of a mutant allele of a Portuguese kindred being the origin of the mutation in most Japanese FAP patients.

Abbreviations: FAP, familial amyloidotic polyneuropathy; SNPs, single nucleotide polymorphisms; TTR, transthyretin
METHODS

Study subjects
A total of 100 DNA samples were collected from FAP patients with TTR Val30Met in four countries. In Japan, in addition to patients in the two major foci (16 patients from Kumamoto and two from Nagano), 20 patients from other locations throughout the country agreed to participate in this study. In Europe, 21 samples from Majorca Island (Spain), 18 samples from Portugal, and 23 samples from Sweden were collected. A total of 54 healthy volunteers in Asahikawa Medical College were recruited to provide DNA samples for haplotype analysis of the Japanese population, and 96 Caucasian DNA samples were purchased from the Coriell Cell Repository (Coriell Institute, Camden, NJ, USA). The Ethical Committee of Kumamoto University School of Medicine approved this study, and all patients and Japanese volunteers gave written informed consent.

Microsatellite genotyping
We selected five informative microsatellite sequences (L1, L2, L4, L8, and L9) near the TTR gene region from the National Center for Biotechnology Information (NCBI) database GenBank (fig 1). PCR primers were designed to flank the repeat sequences for the analysis. The PCR primers used for the analysis are as follows: L1 forward: 5'-TGCAAGACAGCTCAAGAGA-3'; L1 reverse: 5'-AAGCAATTGCAAATGGGAAG-3'; L2 forward: 5'AGGCGATTGGGATAGTCATGG-3'; L2 reverse: 5'-GGAATCTGTTGCGCTCATTAT-3'; L4 forward: 5'-TTCCCTCGTGACCTATT-3'; L4 reverse: 5'-TAGTGTCCCAAACCGGACACTT-3'; L8 forward: 5'-AACCCTGAGTAGACGGTC-3'; L8 reverse: 5'-TTCCCTTATCTAAGAAGCCACAT-3'; L9 forward: 5'-GGGCTCAGTTAGTTAGAAA-3'; L9 reverse: 5'-CCACACAGAAGAACCGAACC-3'. Fluorescence-labeled primers were used for PCR amplification in a volume of 7.5 μl containing 20 ng of genomic DNA, 10 mM Tris–HCl (pH 8.4), 50 mM KCl, 1.5 mM MgCl2, 0.01% gelatin, 200 μM dNTPs, each primer at 5 pmol, and 0.25 U AmpliTaq Gold polymerase (Applied Biosystems, Foster City, CA). PCR amplification was performed for 40 cycles at 95˚C for 30 s, at 49–62 ˚C for 30 s, and at 72˚C for 30 s, depending on the region analysed, with a final extension step of 5 min at 72˚C in a GeneAmp PCR9700 System (Applied Biosystems, Foster City, CA). Electrophoresis was performed with an ABI 310 Genetic Analyzer (Applied Biosystems, Foster City, CA). The GenBank database (NCBI) was accessed to retrieve data on the microsatellite sequences. All markers except L2, whose name is D18S36, are anonymous in the GenBank database. All markers except L1 showed similar heterozygosities in Japanese and Caucasian subjects. Four SNPs used in this study (L3, L5, L6, and L7) were obtained from the Japanese SNP database (JMSJ JSNP). Two of those (loci 3 and 5) were located in the 5'-flanking region, and the remaining two (loci 6 and 7) were located in intron 3. Almost no ethnic difference in allele frequency between Japanese and Caucasians was found. The Val30Met mutation occurs in exon 2 (fig 1).

Results and discussion
Nine polymorphisms were employed in the present study. Of those, five (L1, L2, L4, L8, and L9) are microsatellite markers (fig 1), and L2 and L4 were in the 5'-flanking region of the gene. L1 was located about 90 kb upstream of L2, and L8 was about 103 kb downstream of L7. Thus, the gene region analysed covered 215 kb (fig 1). The heterozygosity of microsatellite markers of Japanese and Caucasian controls is shown in table 1. The Val30Met mutation occurs in exon 2 (fig 1).

All nine polymorphisms were employed to construct haplotypes for Japanese patients and controls. To clarify the origin of the mutant allele, Japanese patients were classified into three groups: 16 patients from Kumamoto, two from Nagano, and 20 from the rest of Japan. As shown in table 3, patients from Kumamoto showed a major haplotype frequency of 40% (which is close to 50%), but the same haplotype in the controls was very rare, in fact, it was

![Figure 1](http://www.jmg.bmj.com/)

Figure 1 Genomic structure and locations of polymorphic sites used in the human TTR gene. Boxes indicate exons; horizontal lines represent introns and the 5' upstream and 3' downstream regions of the gene. Downward arrows indicate locations of microsatellite markers, and upward arrows indicate locations of SNPs. The thick upward arrow represents the position of the Val30Met mutation.
Table 1 Heterozygosity of microsatellite markers above Japanese and Caucasian subjects

<table>
<thead>
<tr>
<th>Loci</th>
<th>Japanese</th>
<th>Caucasian</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.497</td>
<td>0.704</td>
</tr>
<tr>
<td>L2</td>
<td>0.766</td>
<td>0.702</td>
</tr>
<tr>
<td>L4</td>
<td>0.349</td>
<td>0.448</td>
</tr>
<tr>
<td>L8</td>
<td>0.737</td>
<td>0.761</td>
</tr>
<tr>
<td>L9</td>
<td>0.871</td>
<td>0.856</td>
</tr>
</tbody>
</table>

To answer the second question, haplotype analysis via gene polymorphisms has been performed to clarify the founder effect. Several researchers have discussed the origin of the TTR Val30Met gene in FAP patients from Japan, North America, and Europe. All these data were analysed by using six or seven SNPs inside the gene, a region of about 7.0 kb, and the haplotype was determined by pedigree analysis. Yoshioka et al. analysed eight families, including two from each major focus in Japan. They concluded that the mutation had a multiple origin because two isolated families, not from the two major foci, have different haplotypes, although the remaining six have the same haplotype, which was named ‘haplotype I’. II and Sommer analysed six unrelated FAP patients in North America and performed haplotype analysis in the absence of DNA samples for relatives. They found four different haplotypes and thus agreed with a multiple origin hypothesis. For Europe, however, Almeida et al. and Reilly et al. found only haplotype I in patients from Portugal, Spain, and Sweden. In the present study, we used, in addition to four SNPs (two the same as those analysed before by researchers), four highly polymorphic microsatellite markers covering 215 kb of the TTR gene region. A microsatellite repeat is generally considered to have a relatively high mutation rate when compared with SNPs, but its mutation rate is estimated to be about 10^{-3} per locus per generation, which is negligibly low. If the duration of one generation is assumed to be 30 years, a mutation at a certain microsatellite locus would occur at a rate of only one in 30,000 years. In view of the high heterozygosity of microsatellite markers, such a microsatellite would be a powerful marker for our study.

To determine the haplotype profile in the general population, 54 Japanese and 96 Caucasian control subjects underwent genotyping, and haplotypes were constructed. As expected, haplotypes constructed with all nine polymorphisms had a low frequency, the highest frequencies being 9.6% in Japanese and 9.5% in Caucasians, which indicated recombination in this 215 kb region, which occurred over a substantial time period, as is usual (table 4).

In diseases inherited in an autosomal dominant fashion, an allele responsible for the disease in the patient population would theoretically have a frequency of 50%. The fact that the frequency of the major haplotype observed in the Kumamoto focus (237–307-T-271-C-G-A-299–311) was 40%, which is considered to be close to 50%, whereas that of Japanese focus (237–307-T-271-C-G-A-299–311) was 40%, which is considered to have a relatively high mutation rate when compared with SNPs, but its mutation rate is estimated to be about 10^{-3} per locus per generation, which is negligibly low. If the duration of one generation is assumed to be 30 years, a mutation at a certain microsatellite locus would occur at a rate of only one in 30,000 years. In view of the high heterozygosity of microsatellite markers, such a microsatellite would be a powerful marker for our study.

Several major issues remain unsettled in the field of research on FAP caused by the Val30Met mutation of the TTR gene. First, although large foci of patients are located in several restricted areas of the world, why is only the Val30Met mutation found in those foci, even though more than 80 different mutations of TTR gene have been identified? Second, does any common founder exist among the large foci of patients throughout the world? Third, what causes the significant differences in clinical symptoms among FAP patients with the Val30Met mutation compared with FAP patients with other mutations? For example, the age at onset of the disease in patients in Sweden is much later than...
suggests that most were also derived from the same founder of the foci, rather than from independent sporadic mutations.

Each focus of European FAP patients has its own major haplotype, with a frequency close to 50% (40.9–47.6%) (table 4). The major haplotypes for Portuguese and Japanese patients are the same except for locus 8; in other words, at least the 103 kb region from locus 1 to locus 7 is common. One plausible explanation for this would be that the Portuguese Val30Met mutation was brought to Japan in recent times. Portuguese merchants arrived in Japan during the 16th century, and active trading was pursued in all areas in Kyushu (the island on which Kumamoto is located) until the beginning of the 17th century, when Japan became a closed country. The most likely explanation is thus as follows: in the early phase of transfer of the allele into the Japanese population, recombination with the Japanese allele (L8–L9; 299–311, which was found in Japanese controls) occurred once between L7 and L8, after which the allele with the Val30Met mutation spread to Nagano and other areas of Japan.

Comparison of the major haplotypes for Portuguese and Spanish patients showed that a 116 kb region (loci 2–8) was common. This could also be explained by the existence of a common founder. Swedish patients, however, had only a 13 kb region (loci 3–7) in common with patients of other foci. Although the possibility of a common founder of Swedish and Portuguese cases cannot be ruled out, the fact that the haplotype of this 13 kb region is the same as the major haplotype found in Caucasian controls might indicate that the Val30Met mutation of the Swedish focus is due to an independent mutational event. However, further molecular genetic studies have to be performed focusing on the Swedish cases because of a trade history including the Swedish Viking invasion of Portugal in the 10th century, and because far milder symptoms occur in Swedish patients than in Japanese or Portuguese patients. The cause of the discrepant clinical phenotypes of Swedish patients and patients from other foci—the third question mentioned above—could be a difference in genetic background such as the existence of modifying gene(s) and/or other known or unknown mechanisms. The answer to this question would be quite valuable for development of therapeutic measures for FAP patients.

Because the haplotypes of Spain and Portugal are somewhat diverse and that of Japan has a single disease-causing allele, the European haplotype could be older than the Japanese haplotype. This suggestion would support the hypothesis that the Portuguese mutant allele was brought to Japan, rather than transferred in an opposite direction, from Japan to Portugal.

In summary, our data provide the molecular evidence that the Val30Met mutation that is widespread among patients in Portugal, Spain, and Japan, results from an ancient mutation of common origin rather than from multiple recurrent mutational events in a common haplotype. The data also

Table 3 Major haplotype frequencies for Japanese patients and controls

<table>
<thead>
<tr>
<th>Population</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>L8</th>
<th>L9</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumamoto patients</td>
<td>237</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>311</td>
<td>0.400</td>
</tr>
<tr>
<td>Nagano patients</td>
<td>237</td>
<td>305</td>
<td>T/T</td>
<td>271</td>
<td>C/C</td>
<td>G/G</td>
<td>A/A</td>
<td>299</td>
<td>301</td>
<td>311/315</td>
</tr>
<tr>
<td>Patients from other locations</td>
<td>237</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>311</td>
<td>0.318</td>
</tr>
<tr>
<td>Japanese controls</td>
<td>241</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>325</td>
<td>0.096</td>
</tr>
<tr>
<td>Portuguese patients</td>
<td>237</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>327</td>
<td>0.050</td>
</tr>
<tr>
<td>Spanish patients</td>
<td>235</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>295</td>
<td>327</td>
<td>0.050</td>
</tr>
<tr>
<td>Swedish patients</td>
<td>237</td>
<td>305</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>305</td>
<td>311</td>
<td>0.050</td>
</tr>
<tr>
<td>Caucasian controls</td>
<td>241</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>327</td>
<td>0.050</td>
</tr>
</tbody>
</table>

Table 4 Major haplotype frequencies for foci of FAP patients and for controls

<table>
<thead>
<tr>
<th>Population</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
<th>L8</th>
<th>L9</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kumamoto patients</td>
<td>237</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>311</td>
<td>0.400</td>
</tr>
<tr>
<td>Japanese controls</td>
<td>241</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>325</td>
<td>0.096</td>
</tr>
<tr>
<td>Portuguese patients</td>
<td>237</td>
<td>305</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>305</td>
<td>327</td>
<td>0.050</td>
</tr>
<tr>
<td>Spanish patients</td>
<td>235</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>295</td>
<td>327</td>
<td>0.050</td>
</tr>
<tr>
<td>Swedish patients</td>
<td>237</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>305</td>
<td>311</td>
<td>0.050</td>
</tr>
<tr>
<td>Caucasian controls</td>
<td>241</td>
<td>307</td>
<td>T</td>
<td>271</td>
<td>C</td>
<td>G</td>
<td>A</td>
<td>299</td>
<td>327</td>
<td>0.050</td>
</tr>
</tbody>
</table>

www.jmedgenet.com
clearly demonstrate that microsatellite analysis must be applied in combination with SNPs when the origin and distribution of mutations are studied.

ACKNOWLEDGMENTS

We wish to thank the patients and their families for their invaluable participation and cooperation. We are grateful to Shin-ichi Chiba and Makiko Funamizu for excellent technical assistance.

Authors’ affiliations

H Ohmori, M Uchino, Department of Neurology, Kumamoto University School of Medicine, Kumamoto, Japan
Y Ando, M Nakamura, Department of Laboratory Medicine, Kumamoto University School of Medicine, Kumamoto, Japan
Y Makita, Department of Pediatrics, Asahikawa Medical College, Asahikawa, Japan
Y Onouchi, A Hata, Laboratory for Gastrointestinal Diseases, RIKEN SNP Research Center, Yokohama, Japan
T Nakajima, I Inoue, Division of Genetic Diagnosis, The Institute of Medical Science, The University of Tokyo, Japan
M J M Saraiva, H Terazaki, Instituto de Ciencias Biomedicas, Universidade de Porto, Porto, Portugal
O Suhr, Department of Medicine, Umea University Hospital, Umea, Sweden
G Sobue, Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
M Yamaizumi, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
M Munar-Ques, Hospital General Universitario, Murcia, Spain
A Hata, Department of Public Health, Chiba University Graduate School of Medicine, Chiba, Japan

The authors’ work was supported by grants from the Amyloidosis Research Committee, the Pathogenesis, Therapy of Hereditary Neuropathy Research Committee, the Surveys and Research on Specific Disease, the Ministry of Health and Welfare of Japan, and the Charitable Trust Clinical Pathology Research Foundation of Japan, and Research for the Future Program Grant and Grant-in-Aid for Scientific Research on Priority Areas (C) “Medical Genome Science”, and Grants-in-Aid for Scientific Research (B) 15390275 from the Ministry of Education, Science, Sports and Culture of Japan.

Conflict of interest: none declared.

Correspondence to: Dr A Hata, Department of Public Health, Chiba University Graduate School of Medicine, Inohana 1–8-1, Chiba 260–8670, Japan; ahata@med.m.chiba-u.ac.jp

Received 29 October 2004
Accepted 2 November 2004

REFERENCES

Common origin of the Val30Met mutation responsible for the amyloidogenic transthyretin type of familial amyloidotic polyneuropathy

H Ohmori, Y Ando, Y Makita, Y Onouchi, T Nakajima, M J M Saraiva, H Terazaki, O Suhr, G Sobue, M Nakamura, M Yamaizumi, M Munar-Ques, I Inoue, M Uchino and A Hata

J Med Genet 2004 41: e51
doi: 10.1136/jmg.2003.014803

Updated information and services can be found at:
http://jmg.bmj.com/content/41/4/e51

References
This article cites 18 articles, 7 of which you can access for free at:
http://jmg.bmj.com/content/41/4/e51#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Colon cancer (131)
- Neuromuscular disease (257)
- Peripheral nerve disease (97)
- Metabolic disorders (329)
- Neurogastroenterology (21)
- Molecular genetics (1254)
- JMG Online mutation reports (168)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/