Loss of five amino acids in BRCA2 is associated with ovarian cancer

S L Martinez, J Herzog, J N Weitzel

Methods

Personal and family history, blood samples, and archival tumours were obtained from the patient and first degree relatives after written informed consent for participation in an institutional review board approved prospective hereditary cancer registry (IRB#96144). To investigate whether the mutation tracked with disease in the family, we isolated leukocyte DNA from the proband, two unaffected sisters, and a daughter, using a salting out method (AGTC; Denver, CO, USA). Paraffin embedded ovarian tumour tissue blocks from the proband and her deceased mother (history of breast cancer at 57 years of age and ovarian cancer at 62 years) were sectioned and microdissected to yield material with >90% tumour or normal cells, and DNA was extracted using a standard phenol/chloroform procedure following digestion with proteinase K. Exon 18 of BRCA2 was amplified using published primer sequences and a modified touchdown PCR program. Nested primers encompassing the 8457del15 mutation were designed to amplify a 161 bp fragment from the initial PCR product (forward: 5'-CAGATGGGTGCTATGCTGTTAAGG and reverse: 5'-CATAAGAGATTCGGGCTTCAAG). This 161 bp amplicon was then used for LOH experiments and for sequencing on an ABI 377 automated sequencer (Applied Biosystems; Foster, CA, USA). A single PCR amplification (using only the inner primers) was sufficient for DNA extracted from whole blood.

Six microsatellite markers spanning chromosome 13 (D13S742, D13S218, D13S171, D13S267, D13S263, and D13S248; listed in physical map order) were amplified from matched normal and tumour sample pairs using published primer sequences. The markers were also amplified in

Abbreviations: HBOC, hereditary breast and ovarian cancer; LOH, loss of heterozygosity; OB, oligonucleotide/oligosaccharide binding; VUS, variant of unknown significance

Key points

- Mutations in BRCA1 and BRCA2 are responsible for the majority of families with hereditary breast and ovarian cancer (HBOC) syndrome, and most deleterious mutations are small insertions/deletions, nonsense mutations, or splice site mutations that result in a truncated protein.
- The significance of minor alterations in coding regions such as missense mutations and small in frame insertions/deletions frequently cannot be inferred, so they are classified as variants of unknown significance, which creates a clinical dilemma in genetic counselling.
- We confirmed the probable clinical significance of a 15 bp in frame deletion in exon 18 of BRCA2 (8457del15) that was discovered through BRCA gene sequencing of a 50 year old ovarian cancer patient from an HBOC family.
- The variant was found to track exclusively in affected family members. Tumour samples from two carriers showed selective loss of the wild type allele at the BRCA2 locus, and the extent of chromosomal loss determined by LOH was distinct for each tumour. The region of BRCA2 harbouring the mutation revealed high evolutionary conservation across species and two overlapping functional domains that may be disrupted in carriers of this variant.

Online mutation report

Heredity breast and ovarian cancer (HBOC) syndrome is characterised by an early age of onset, and an autosomal dominant pattern of inheritance. Mutations in BRCA1 or BRCA2 account for the majority of families with HBOC, with carriers bearing a lifetime risk of approximately 50–80% for breast cancer and 15–45% for ovarian cancer. Most deleterious mutations are small insertions/deletions, nonsense mutations, or splice site mutations that result in a frame shift and/or premature protein truncation. However, minor alterations such as missense mutations or small in frame insertions/deletions in the coding regions of BRCA1 and BRCA2 are often the only change detected. These present a clinical dilemma in cancer risk counselling because of their classification as variants of unknown significance (VUS), which are essentially uninformative findings. A number of analytical strategies exist to elucidate the significance of a VUS. If the variant has been reported previously, the commercial vendor of the gene test provides ancillary data about the VUS, such as the number of observations, predominant racial or ethnic origin, whether seen concurrently with a known deleterious mutation, and whether the VUS tracks with disease in families where such testing is possible. In addition, given the presumed tumour suppressor function of the BRCA proteins, it has been suggested that somatic allelic deletion of the wild type allele in a tumour, as detected by loss of heterozygosity (LOH) analysis, can provide evidence for the deleterious nature of the respective germline mutations. Finally, the degree of evolutionary conservation of the amino acid sequence and the presence of functional domains in a given region of the protein can be considered circumstantial evidence for the importance of the amino acids encompassing that domain.

BRCA gene sequencing (Myriad Genetic Laboratories Inc, Salt Lake City, UT, USA) of a 50 year old ovarian cancer patient from an HBOC family revealed a previously unreported 15 bp in frame deletion in exon 18 of BRCA2 (8457del15), classified as a VUS. This mutation is predicted to result in the deletion of five amino acids (2744–2748; RLTVG) in the carboxyterminal region of the protein. We report here studies to elucidate the clinical significance of this mutation.
unaffected relatives to gain haplotype information to determine the phase of the wild type allele. PCR products were analysed by PAGE on 8% (30 cm×40 cm, 0.8 mm spacers) gels in 1×TBE and visualised by ethidium bromide staining. LOH was determined semi-quantitatively (>50% allelic imbalance), and loci were scored as uninformative (homozygous in normal tissue), informative (heterozygous), or LOH.

Analysis of evolutionary conservation for BRCA2 was performed by a multisequence alignment using the SeqWeb comparison program Pile-Up (Accelrys; San Diego, CA, USA). Protein sequences were obtained by linking out to “Protein Neighbors” from human BRCA2 on the NCBI website (www.ncbi.nlm.nih.gov). We conducted a PubMed (National Library of Medicine) search and reviewed published manuscripts reporting on functional and structural studies of BRCA2.

RESULTS
This was the first report of the BRCA2 (8457del15) VUS by the vendor, therefore no ancillary data were available. Sequencing of the PCR product from the affected mother’s tumour block confirmed the presence of the 15 bp deletion (fig 1). The smaller, mutated allele was clearly detected in both the proband and her mother by electrophoresis of the 161 bp fragment on a native 8% acrylamide gel. Conversely, the unaffected siblings and daughter of the proband were all negative for the mutation (fig 2). The probability of the variant tracking solely with disease in this family (that is, carrier status of the five individuals, and their respective affected/unaffected status) v chance (the 50:50 odds of inheriting a specific autosomal allele) is 1/32 (0.03). Excluding the 24 year old daughter, the probability is 1/16 (0.06), although the current ages of the other unaffected members may not be adequate to exclude potential ovarian cancer expression (the age at onset is not reliably earlier in BRCA carriers). In addition, tumours from both the proband and her mother showed loss of the wild type allele compared with normal tissue (fig 2C).

Analysis of six microsatellite markers along chromosome 13 revealed selective loss of the wild type allele in both the proband and her mother (data not shown). In the proband’s tumour, all informative markers revealed LOH including distal markers on either end of the chromosome, indicating that complete somatic loss of chromosome 13 may have occurred. The mother’s tumour was uninformative for the 13p terminal marker (D13S742) and retained heterozygosity at D13S218. All other markers analysed displayed LOH. Thus, the somatic loss in each tumour was unique.

An alignment of BRCA2 amino acid sequences from five species (human, mouse, rat, and dog), including four of the five amino acids involved in the deletion (fig 3). A conservative change, from arginine to lysine, was seen at amino acid position 2744 in mouse. All other residues are identical across the five species including chicken.

Finally, a comprehensive PubMed search was conducted to collect information on mutations occurring within the region of interest, as well as any pertinent structural data. Of note, examination of recent crystallographic data from the BRCA2 carboxyterminus revealed that in addition to being located within one of three oligonucleotide/oligosaccharide binding (OB) folds, the 8457del15 variant obliterates three DSS1 contacting residues.

DISCUSSION
VUS in the BRCA genes continue to be problematic in cancer risk counselling. If the VUS tracks exclusively with disease in
the family, as it does here, the likelihood of pathogenicity is increased. However, studies of tracking within a single family are seldom definitive because of limited statistical power, phenocopies, and incomplete age dependent penetrance. The strength of the association can be augmented by informative LOH studies demonstrating loss of the wild type allele in tumours. Furthermore, microsatellite markers can be useful for determining the extent of the somatic chromosomal loss. The use of sequence databases to determine the degree of evolutionary conservation in the amino acid sequence region in which the variant occurs is a complementary approach. High conservation indicates probable biological significance and possible disruption of functional domains, we conclude that the 15 bp deletion is highly likely to be deleterious. This information has clinical relevance for at risk members of this family and others who may have alterations affecting this region of BRCA2.

ACKNOWLEDGEMENTS

This study was supported in part by the California Research Program (grant no. 99-86874). We wish to thank Dr G Schlake for assistance with microdissections and Dr C Szabo and Dr T Frank for helpful discussions.

Authors’ affiliations
S L Martinez, J Herzog, J N Weitzel, Department of Clinical Cancer Genetics, Beckman Research Institute
J N Weitzel, City of Hope (COH) Comprehensive Cancer Center, Duarte, CA, USA

Correspondence to: Dr J N Weitzel, Director, Department of Clinical Cancer Genetics, City of Hope Cancer Center, 1500 E Duarte Road, Duarte, CA 91010, USA; jweitzel@coh.org

REFERENCES

ELECTRONIC DATA ACCESS

Figure 3 Multisequence alignment of BRCA2 orthologs. The five amino acids deleted in 8437del15 (2744–2748), depicted by the solid black bar, are highly conserved with only a conservative change from arginine to lysine in the first amino acid position in mouse, in addition to high conservation across the region, with 39/50 amino acid identity.
Loss of five amino acids in *BRCA2* is associated with ovarian cancer

S L Martinez, J Herzog and J N Weitzel

J Med Genet 2004 41: e18
doi: 10.1136/jmg.2003.010827

Updated information and services can be found at:
http://jmg.bmj.com/content/41/2/e18

These include:

References
This article cites 8 articles, 1 of which you can access for free at:
http://jmg.bmj.com/content/41/2/e18#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Breast cancer (239)
- Genetic screening / counselling (886)
- Molecular genetics (1254)
- Ethics (220)
- Immunology (including allergy) (604)
- JMG Online mutation reports (168)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/