The hereditary spastic paraplegias (HSPs) are a group of single gene disorders in which the corticospinal tracts fail to develop normally, or degenerate after initially normal development. The HSPs all share the principal clinical feature of progressive lower limb spastic paralysis, and are subdivided into pure and complicated forms, depending on the presence of additional neurological or non-neurological features.1,2

The pure HSPs tend to be associated with neurodegeneration, rather than abnormal development, and histopathological studies in pure HSP show a length-dependent "dying back" of the terminal ends of the corticospinal tract axons, with the longest axons being involved first.1 The SPG4 gene, spastin, is the most important pure HSP gene, being responsible for approximately 40% of definite autosomal dominant pure HSP and a smaller proportion of sporadic cases and cases with uncertain family history.3,4 The 616 amino acid spastin protein is a widely expressed AAA (ATPases associated with diverse cellular activities) protein.5 More than 100 different spastin mutations have been described, including numerous missense, nonsense, frameshift, and splice site mutations, as well as less frequent whole exon deletions. With only a few possible exceptions, the missense mutations are located in the AAA cassette, from amino acids 342–599. Splice site mutations almost exclusively involve exons 5–16. Nonsense and frameshift mutations are scattered across the gene, with the smallest predicted protein consisting of fewer than 40 amino acids, the largest 562 amino acids.6

It is likely that the molecular pathological mechanism of truncating and splice site spastin mutations is loss of function. The associated abnormal transcripts may be unstable, and recent data show that mutant spastin protein is absent in fibroblasts from patients with nonsense and frameshift spastin mutations.5,7 These classes of spastin mutation are probably associated with haploinsufficiency, with disease occurring once functioning spastin levels fall below a critical threshold level. Tolerance for reduced dosage of functioning spastin may be very low, as some "leaky" (that is, creating both wild-type and aberrant splice variants) splice site mutations result in only slight reductions in wild-type mRNA expression.5 On the other hand, spastin missense mutations may act via a different mechanism. It has been suggested that spastin has a microtubule severing function and that spastin missense mutations bind constitutively to microtubules, perhaps acting in a dominant negative fashion to block the normal function of spastin or unidentified spastin-related proteins.6

One approach to resolve the issue of whether spastin missense mutations have a different molecular pathological mechanism to other mutational types is to examine whether mutational class is correlated with clinical features. We therefore carried out a meta-analysis of age at onset in HSP caused by spastin mutations, in order to test the null hypothesis that there is no difference in age at onset between groups of families with different classes of spastin mutation.8 Data gathered on 75 families revealed no significant difference in age at onset between HSP patients with missense vs other spastin mutational classes, providing no evidence for a genotype-phenotype correlation.

Key points
- The hereditary spastic paraplegias (HSPs) are a group of single gene disorders in which the corticospinal tracts fail to develop normally, or degenerate after initial normal development.
- Mutations in the SPG4 gene, spastin, are responsible for circa 40% of definite autosomal dominant pure HSP.
- The range of spastin mutational classes found in HSP is very broad. It is likely that nonsense, frameshift and splice site mutations of spastin act via a loss of function mechanism. However, it has been suggested that spastin missense mutations may act via a dominant negative mechanism.
- One approach to resolve the issue of whether spastin missense mutations have a different molecular pathological mechanism to other mutational types is to examine whether mutational class is correlated with clinical features. We therefore carried out a meta-analysis of age at onset in HSP caused by spastin mutations, in order to test the null hypothesis that there is no difference in age at onset between groups of families with different classes of spastin mutation.
- Data gathered on 75 families revealed no significant difference in age at onset between HSP patients with missense vs other spastin mutational classes, providing no evidence for a genotype-phenotype correlation.

Abbreviations: HSP, hereditary spastic paraplegia

References
data for individual affected patients directly from the relevant papers, or from unpublished data. Asymptomatic individuals were excluded from the analysis.

Within each study, we compared age at onset across different mutational classes and then estimated, as the summary ‘effect’, a hazard ratio of non-missense relative to missense mutation families using conditional Cox regression. We then pooled the resultant hazard ratios and variances using standard methods of meta-analysis as implemented in Stata 7.0 (Stata Corp., TX, USA). Within each study, we compared age at onset across different mutational classes and then estimated, as the summary ‘effect’, a hazard ratio of non-missense relative to missense mutation families using conditional Cox regression. We then pooled the resultant hazard ratios and variances using standard methods of meta-analysis as implemented in Stata 7.0 (Stata Corp., TX, USA).

In total, we obtained data on 75 families with known spastin mutations. Age at onset data were available from 356 subjects from these families (details of ages at onset and mutations are available on request). The mutations present were divided into four broad groups; 18 of the families had missense mutations, 23 had presumed splice site mutations, 30 had mutations that resulted in premature truncation (either frameshift or nonsense mutations), and 4 families had mutations that were predicted to cause both a splice mutation and a frameshift. Table 1 shows the numbers of patients with each class of mutation, unweighted mean age at onset and the mean age at onset weighted by family membership. Individual study and pooled hazard ratios for missense mutations relative to all other classes of mutations are shown in Table 2. The hazard ratio was homogeneous across studies and there was no significant difference in age at onset between groups, and secondly, it is feasible that similar ages at onset may arise from different molecular pathological mechanisms, as firstly, our sample size may not have been large enough to detect a small difference in age at onset between groups, and secondly, it is feasible that similar ages at onset may arise from different molecular pathological mechanisms. It is likely that direct experimental work or further meta-analyses with very large sample sizes will be required to resolve this issue.

ACKNOWLEDGEMENTS
We thank the families who took part in the studies on which this analysis was based. DCR is a Wellcome Senior Research Fellow in Clinical Science.

Authors’ affiliations
A G Yip, Genetics Program (Department of Medicine), Boston University School of Medicine, Boston, MA 02118, USA
A Dörr, INSERM U 289 and Département de Génétique, Cytogénétique et Embryologie, Hôpital de la Salpétrière, Paris, France
D A Marchuk, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
A Ashley-Koch, Center for Human Genetics, Duke University Medical Center, Durham, NC 27710, USA
A Hentati, Department of Neurology, Northwestern University Medical School Chicago, 300 E. Superior Street, Tarry 13-715, Chicago, IL 60611, USA
D C Rubinstein, E Reid, Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, University of Cambridge, Cambridge, UK

Correspondence to: Dr E Reid, Department of Medical Genetics, University of Cambridge, Box 134, Addenbrooke’s Hospital, Cambridge CB2 2QQ UK; ered@hmgp.mrc.ac.uk.

REFERENCES
1 Harding AE. The hereditary ataxias and related disorders. Edinburgh: Churchill Livingstone, 1984

Table 1 Unweighted and weighted mean age at onset for each mutational class, for families described in the four studies included in the meta-analysis

<table>
<thead>
<tr>
<th>Mutational class</th>
<th>No of families</th>
<th>No of subjects</th>
<th>Mean age at onset</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unweighted years (years)</td>
<td>Weighted by family years (years)</td>
<td></td>
</tr>
<tr>
<td>Frameshift- presumed exon skip</td>
<td>25</td>
<td>28.91 (4.98)</td>
<td>28.44 (5.02)</td>
</tr>
<tr>
<td>Missense</td>
<td>16</td>
<td>24.88 (13.96)</td>
<td>25.26 (11.31)</td>
</tr>
<tr>
<td>Splice site</td>
<td>15</td>
<td>29.02 (9.63)</td>
<td>29.56 (8.12)</td>
</tr>
<tr>
<td>Truncating</td>
<td>14</td>
<td>29.98 (10.63)</td>
<td>30.37 (10.63)</td>
</tr>
</tbody>
</table>

Table 2 Individual study and pooled hazard ratios for missense mutations relative to all other classes of mutations

<table>
<thead>
<tr>
<th>Study</th>
<th>Hazard ratio</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonknechten</td>
<td>1.33</td>
<td>0.86 to 2.04</td>
</tr>
<tr>
<td>Hentati</td>
<td>0.99</td>
<td>0.60 to 1.64</td>
</tr>
<tr>
<td>Lindsey</td>
<td>1.19</td>
<td>0.29 to 4.96</td>
</tr>
<tr>
<td>Svensson</td>
<td>1.11</td>
<td>0.66 to 1.77</td>
</tr>
<tr>
<td>Pooled</td>
<td>1.14</td>
<td>0.78 to 1.50</td>
</tr>
</tbody>
</table>

Test for heterogeneity: Q = 0.79, p = 0.85.
Meta-analysis of age at onset in spastin-associated hereditary spastic paraplegia provides no evidence for a correlation with mutational class

A G Yip, A Dürr, D A Marchuk, A Ashley-Koch, A Hentati, D C Rubinsztein and E Reid

J Med Genet 2003 40: e106
doi: 10.1136/jmg.40.9.e106

Updated information and services can be found at:
http://jmg.bmj.com/content/40/9/e106

These include:

References
This article cites 9 articles, 5 of which you can access for free at:
http://jmg.bmj.com/content/40/9/e106#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Neuromuscular disease (257)
- Peripheral nerve disease (97)
- Genetic screening / counselling (886)
- Molecular genetics (1254)
- JMG Online mutation reports (168)

Notes