Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome

R Heller, A Rauch, S Lüttgen, B Schröder, A Winterpacht

Key points

- We present the case of a patient with the classical phenotype of Williams-Beuren syndrome who has only a partial deletion of the common 1.5 Mb deletion interval at 7q11.23.
- Fluorescence in situ hybridisation (FISH) with the commercial WBSCR probe (from Appligene/Oncor) showed two specific signals in each metaphase, but repeat FISH with a second commercial FISH probe (LIS ELN from Vysis) showed a hemizygous microdeletion at 7q11.23. Additional FISH probes confirmed the partial deletion with the rare proximal breakpoint between STX1A and ELN and the distal common breakpoint around D7S489A.
- We review published reports and discuss the implications of partial deletions for the diagnostic procedure and the correlation of genotype with phenotype in Williams-Beuren syndrome.

CASE REPORT AND METHODS

The patient and his healthy twin sister were born to non-consanguineous parents (maternal age 26, paternal age 41) after an uneventful pregnancy. Birth weight, height, and head circumference were within the normal range for twins. The constellation of supravalvular aortic stenosis, pulmonary
valve stenosis, developmental retardation (not talking or walking at the age of 18 months), very friendly nature, and characteristic facial features in the patient led to the clinical diagnosis of Williams-Beuren syndrome (fig 1). Serum calcium levels from repeat measurements were within the normal range with one slightly raised value. When specifically asked about any behavioural traits, the patient’s parents mentioned his hypersensitivity to environmental noise in comparison to his healthy sister.

Chromosomes were analysed by conventional GTG banding of 15 metaphases from lymphocytes at approximately 500 bphs. For FISH analysis, commercial WBS probes from Qbiogene-Alexis (catalogue No CP5155-DC) and from Vysis (catalogue No 32-190041) were used. Some of the non-commercial FISH probes were kindly provided by Dr Lucy Osborne, Department of Genetics and Genomic Biology, Hospital for Sick Children, Toronto, Canada.17–19 Labelling, hybridisation, and detection were performed according to the suppliers’ instructions and as described elsewhere.20

RESULTS
Initial chromosomal analysis yielded a normal 46,XY karyotype. FISH analysis with the commercially available WBSCR probe from Qbiogene-Alexis (catalogue No CP5155-DC) showed two specific signals at 7q11.23 in all analysed metaphases (example shown in fig 2A). However, there was a reproducible difference in signal intensity for the cognate probe (fig 2A) that was not found in the metaphases from either of the parents (data not shown). In view of the clinical diagnosis and of the fact that the WBSCR probe represents three different regions (around \textit{FZD9}, \textit{LIMK1}, and \textit{CYLN2}) and covers almost the complete WBS chromosome region (fig 2A), a further 25 metaphases were analysed with the commercially available FISH probe from Vysis (catalogue No 32-190041). This probe consists of an approximately 180 kb probe covering the \textit{ELN} and \textit{LIMK1} genes. There was one signal only in each of the 25 metaphases (fig 2B). The result was compatible with a de novo rearrangement that has led to a deletion including the \textit{ELN} locus but clearly not of all the loci within the WBSCR that are recognised by the 7q11.23 WBSCR probe from Appligene-Oncor. We concluded that the WBS phenotype in this patient was most likely caused by an atypical 7q11.23 deletion.

Microsatellite analysis of DNA from peripheral blood lymphocytes of both parents and the patient showed biallelic pattern for D7S2476 and D5489B, but was not informative.

Figure 2
Fluorescence in situ hybridisation with commercial microdeletion probe sets for 7q11.23 on metaphases from peripheral lymphocytes of our patient. Sequence contents as given by the manufacturers (Qbiogene-Alexis, Vysis). (A) No apparent deletion with the WBSCR probe, but different strength of signal for the cognate probe (white arrows). (B) Hemizygous microdeletion with \textit{ELN} probe (missing signal marked by curved arrow).
for D7S613 and D7S1870 (data not shown, for location of markers see fig 3).

To map the 7q11.23 breakpoints in our patient more accurately, PAC and cosmid probes for FISH analysis were used in dual colour analysis together with chromosome 7 specific centromeric alphoid DNA as control. The FISH results (fig 3) proved a partial deletion, caused by a distal recombination event at the common telomeric breakpoint, as suggested by the hybridisation signals for the PAC clones RP5-1186P10 and RP11-204E14. A proximal recombination event occurred around a rare breakpoint which is located at the centromeric end of PAC clone H_DJ0953F13. Both chromosomes 7 were positive for the cosmid probe cos16g10 (STX1A), but only one signal was seen for the cosmid probe cos82c2 (ELN). The proximal breakpoint therefore lies in a region between STX1A and ELN.

DISCUSSION

Williams-Beuren syndrome belongs to a group of genomic disorders that result from regional genomic architecture predisposing to recombination events. In the case of WBS, non-allelic homologous recombination between segmental DNA duplications flanking the WBS region in 7q11.23 leads to a ~1.5 Mb deletion. The finding that the relatively well defined WBS phenotype is associated with an apparently identical deletion interval in >95% of cases initially raised hopes that a molecular dissection of the phenotype would be feasible. The number of genes identified within the deletion interval has increased steadily and has now reached at least 21 (UCSC Genome Browser on Human November 2002 Freeze at http://genome.cse.ucsc.edu/). However, the understanding of their role in the WBS phenotype has remained unchanged since the ELN gene has been identified as the cause of the vascular malformations in WBS, mainly because of the invariant deletion size in WBS.

Naturally, but rarely occurring 7q11.23 deletion variants in humans may help to identify the genes involved by phenotype-genotype correlation studies (fig 3). The first such atypical deletions were reported by Botta et al. Two patients out of 50 with the classical WBS phenotype had an uncommon centromeric breakpoint between the STX1A and ELN gene, hence questioning the role of the proximal WBSCR in the WBS phenotype. The patient reported here is the third case and thus supports the idea that the dysmorphic, cardiovascular, and at least some of the behavioural features of the WBS phenotype are caused by haploinsufficiency for genes.
mutations in five patients, who have WBS but no detectable WBS, SV AS, or no recognisable phenotype. This was first put forward to remind cytogeneticists that partial microdeletions can result in a potential phenotypic difference from patients with the typical WBS. Patients with deletions on the centromeric side to GTF2I and on the telomeric side. This hypothesis is important as it limits the number of genes that potentially determine the WBS phenotype and excludes STX1A as a possible candidate gene. The lack of STX1A mutations in five patients, who have WBS but no detectable microdeletions, supports this idea.

Nevertheless, we cannot completely exclude that the partial telomeric deletions cause a position effect on the neighbouring chromosome region and may mimic haplosufficiency for the complete set of genes in the 1.5 Mb WBS region. The idea of a position effect is discussed in the recent publication of a spontaneously occurring familial translocation with disruption of the ELN gene in intron 5. Several members of this family who carried an identical translocation presented variably with WBS, SVAS, or no recognisable phenotype. The analysis of the mouse genomic sequence that is orthologous to the human 7q11.23 region will promote our understanding of the genomic organization and genomic function of genes in this interval.

Alternatively, the contribution of some of the genes in the centromeric part of the 1.5 Mb interval to the WBS phenotype could be subtle. For example, some parts of the cognitive and behavioural phenotype may not be clinically obvious in early childhood which is when most WBS patients are phenotyped. WBS and SVAS patients with an atypical deletion should be closely followed up into adulthood in order to detect any phenotypic difference from patients with the typical 1.5 Mb microdeletion.

As a lesson from our particular case, we would like to remind cytogeneticists that partial microdeletions can result in false positive FISH signals depending on the sequence composition of the FISH probe used. This was first put forward as a hypothesis by Robinson et al. and is now illustrated by our case and the cases described by Botta et al. Partial deletions of the WBS region, and indeed other microdeletion intervals, might be more frequent than assumed. Had we only used the ELN FISH probe, the atypical nature of the deletion in our patient would have gone unnoticed.

ACKNOWLEDGEMENTS

The authors wish to thank the family of the patient for their cooperation, Michaela Kirsch for technical assistance, and Dr L R Osborne (Toronto) for providing several FISH probes.

REFERENCES

Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome

R Heller, A Rauch, S Lüttgen, B Schröder and A Winterpacht

doi: 10.1136/jmg.40.8.e99

Updated information and services can be found at:
http://jmg.bmj.com/content/40/8/e99

These include:

References
This article cites 27 articles, 6 of which you can access for free at:
http://jmg.bmj.com/content/40/8/e99#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Valvar diseases (30)
- Calcium and bone (307)
- Clinical diagnostic tests (356)
- Genetic screening / counselling (886)
- Immunology (including allergy) (604)
- Metabolic disorders (329)
- Reproductive medicine (519)
- Stomach and duodenum (16)
- JMG Online mutation reports (168)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/