Endemic Goitre in Greece: A Study of 379 Twin Pairs*

B. MALAMOS, D. A. KOUTRAS, P. KOSTAMIS, G. A. RIGOPOULOS, N. S. ZEREFOS, and X. A. YATAGANAS

From the Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens, Greece

Non-toxic goitre is endemic in Greece (Malamos Koutras, Kostamis, Kralios, Rigopoulos, and Zerefos, 1966a), and detailed biochemical studies have implicated iodine deficiency as the main causative factor (Malamos, Miras, Koutras, Kostamis, Binopoulos, Mantzos, Levis, Rigopoulos, Zerefos, and Tassopoulos, 1966b). However, in the endemic regions studied, both goitrous and non-goitrous persons are iodine deficient practically to the same extent (Malamos et al., 1966b), which agrees with results in other parts of the world (Wayne, Koutras, and Alexander, 1964), most notably in Western New Guinea (Choufoer, van Rhijn, Kassenaar, and Querido, 1963). This has prompted a search for additional factors which predispose a part of the population to goitre development, or to put it in another way, which protect the other from it.

It is now recognized that some cases of sporadic goitre, with or without cretinism, are due not to iodine deficiency but to inherited defects in the biosynthesis of thyroid hormones (McGirr, 1960; Stanbury, 1966; Wayne et al., 1964). None of these defects has been proved to occur in endemic goitre (Murray and Stanbury, 1962), and a careful search in Greece has not produced evidence that any of these is of importance in the aetiology of the goitrous endemic (Malamos et al., 1966b). Nevertheless, since the environmental factor of iodine deficiency does not explain entirely the development of endemic goitre, this has revived interest in the possible implication of genetic factors, which may potentiate the effects of a mild environmental iodine deficiency. Hadjidakis, Koutras, and Daikos (1964) have shown that in Greece endemic goitre affects some families more than others from the same village. This has been interpreted as evidence of an inherited factor, though the influence of the small family environment cannot be excluded.

In a subsequent study by Malamos et al. (1966a) the familial aggregation of goitrous cases has been confirmed. However, it has been found that not only are the progeny of goitrous persons more extensively affected than the descendants of non-goitrous parents, but also that there is a statistically significant concordance between husbands and wives. Women married to goitrous men are themselves more often goitrous than the wives of the non-goitrous inhabitants of the same village. This, of course, points to the small family environment rather than to heredity as the cause of the familial aggregation of cases.

In view of these inconclusive findings, the present investigation was undertaken. 379 twin pairs from the endemic regions of central Greece were examined for the presence or absence of goitre, and the results were analysed separately for the monozygotic and the dizygotic twins, in order to find out whether there was a higher concordance in the former, as would be expected if goitre was an inheritable characteristic.

Subjects and Methods

Visits were made to 109 goitrous villages in three administrative districts (Table I). A sample of the population (usually children and adolescents aged 10-20 years) was examined for goitre, in order to know the over-all prevalence in these regions. All the twins

TABLE I

POPULATION INVESTIGATED

<table>
<thead>
<tr>
<th>Administrative District</th>
<th>Eurytania</th>
<th>Larissa</th>
<th>Jannina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goitrous villages studied Population</td>
<td>23</td>
<td>15,614</td>
<td>46</td>
</tr>
<tr>
<td>Number of persons examined</td>
<td>404</td>
<td>2455</td>
<td>33,713</td>
</tr>
<tr>
<td>Percentage of persons with goitre</td>
<td>54.5</td>
<td>50.8</td>
<td>52.6</td>
</tr>
<tr>
<td>Twin pairs</td>
<td>51</td>
<td>172</td>
<td>156</td>
</tr>
</tbody>
</table>
Endemic Goitre in Greece: A Study of 379 Twin Pairs

living in these villages were examined clinically for the presence or absence of goitre, by the criteria previously used by us (Malamos et al., 1966a). If one of the twins was not living in the village, the pair was excluded from the study.

The twin pairs were classified as monozygotic or dizygotic, on the basis of the general appearance and the following blood tests, which were performed at the Haematology Laboratory of the 'Alexandra' Hospital (Dr. Ph. Fessas): (1) ABO, (2) CDE, and (3) M, N.

Results

The general characteristics of the population investigated are shown in Table I. Table II summarizes the results, the statistical analysis of which is shown in Table III.

It is obvious from Table II that the group of dizygotic twins contains a higher proportion of discordant pairs (i.e. the one twin goitrous and the other non-goitrous) than the monozygotics, which are to a greater extent concordant (i.e. either both members of the pair goitrous or both non-goitrous).

However, in Greece there is a sex difference in the prevalence of endemic goitre (Hadjidakis et al., 1964; Malamos et al., 1966a), and for this reason dizygotic pairs of different sex have been excluded from the statistical analysis shown in Table III. This compares the results obtained in monozygotic twins with those obtained with dizygotic twins concordant as to sex, i.e. either both members of the twin pair males or both females, pairs consisting of one male and one female twin being excluded. Even so there is a difference in the concordance rate between monozygotic and dizygotic twins. This difference is statistically significant for female twins ($\chi^2 = 6.26, p < 0.02$) or for both sexes taken together ($\chi^2 = 8.97, p < 0.005$). For male twins there is only a suggestive trend ($\chi^2 = 2.75, 0.05 < p < 0.10$).

If the discordant twin pairs are subdivided into those with both members goitrous and those with neither, the results are similar (χ^2 with two degrees of freedom: for males $3.08, 0.20 < p < 0.30$; for females $6.85, p < 0.05$; for both sexes $8.97, p < 0.02$).

Discussion

It is clear from the results presented above that monozygotic twins have a higher rate of concordance for the presence of endemic goitre than dizygotic twins. Twins of the same sex, either mono- or dizygotic, are supposed to share the same small family environment, and so the increased concordance is attributed to the greater genetic similarity characterizing the monozygotic twins. In fact this problem may be more complicated, since monozygotic twins may have a more similar environment than dizygotic ones. Nevertheless, the environmental factors leading to goitre are mainly dietetic ones, and twins either mono- or dizygotic presumably share the same food.

The decision whether twins are identical (monozygotic) or not is often very difficult, requiring examination of the placenta and complete blood group studies (Clarke, 1964). However, in a study of a large number of twin pairs such as this, an occasional error in classification would not be expected to alter appreciably the over-all results, and for this reason the criteria for monozygosity adopted here (general appearance and a limited number of blood tests) appear adequate.

The results of this study do not conform to those previously obtained from Switzerland by Eugster (1934), who reported that monozygotic twins did not show a greater concordance with respect to endemic goitre than did dizygotic ones. The reason for this discrepancy may be that in Switzerland...
land the environmental factor (iodine deficiency) has been stronger than it is now in Greece, thus masking the possible contribution made by heredity, or that in Switzerland the population is genetically more homogeneous for the characteristics predisposing to goitre. Furthermore, endemic goitre should not be viewed as a single entity. Although iodine deficiency is generally accepted as the decisive factor in most endemias (Wayne et al., 1964), nevertheless the dietary iodine intake and the urinary excretion values range from a few \(\mu g \) per day, as in New Guinea (Choufoer et al., 1963), to levels generally considered as adequate, as in Eastern Kentucky (London, Koutras, Pressman, and Vought, 1965). In this latter case factors other than iodine deficiency are presumably involved, but their nature remains still elusive.

Taste sensitivity to phenylthiourea (PTC) has not been studied in the present work, since in Greece there is no relation between PTC taste sensitivity and endemic goitre (Malamos et al., 1966a). An association between the non-taster status and sporadic non-toxic goitre has been previously reported by some workers (Harris, Kalmus, and Trotter, 1949; Kitchin, Howel-Evans, Clarke, McConnell, and Sheppard, 1959) but denied by Fraser (1963). In endemic goitre in Israel an association has been reported by Brand (1963), but in other countries this has not been the case (Fraser, 1963; De Luca and Cramarossa, 1965; Malamos et al., 1966a).

The evidence from the present study, as stated above, points to heredity as playing a role in the familial association of goitrous cases previously reported by several authors (Trotter, Cochran, Benjamin, Miall, and Exley, 1962; Hadjidakis et al., 1964; London et al., 1965; Malamos et al., 1966a). It would be difficult, however, to define more precisely the nature of the genetic factors involved and how they affect the predisposition to endemic goitre. A frequency distribution diagram of the estimated thyroid gland sizes in the endemic areas of Greece does not show two peaks, but only a continuous unimodal curve (Malamos et al., 1966a), thus excluding any simple mode of inheritance. Environmental factors such as iodine deficiency are more important than heredity, since, in order to prove a statistical difference no less than 379 twin pairs have been required in the present study, whereas if heredity was a more important factor there would be a more striking difference between mono- and dizygotic twins, readily recognizable even in a much smaller population sample. So it may be concluded that, though heredity seems to be indeed implicated in the predisposition to endemic goitre, its role is probably a minor one, in comparison with the potent environmental factors involved.

Summary

In 109 villages in the endemic goitre areas of Greece 379 twin pairs were examined for the presence or not of goitre. There was a higher concordance rate between the members of the monozygotic twin pairs than in the dizygotic ones. The difference was statistically significant even if dizygotic twins of different sex were excluded. It is concluded that heredity plays a role, probably a minor one, in the predisposition to endemic goitre.

We wish to thank Dr. C. B. Krimbas, Professor of Genetics at the Athens College of Agriculture, for his valuable advice for the completion of this study, and Drs. E. Mavroulidis and B. Papadakos, of the Department of Health, and the District Health Officers, S. Zannias of Eurytania, L. Strakalis of Larissa, and J. Economopoulos of Jannina, for their helpful assistance.

References

Endemic goitre in Greece: a study of 379 twin pairs.

B Malamos, D A Koutras, P Kostamis, G A Rigopoulos, N S Zerefos and X A Yataganas

J Med Genet 1967 4: 16-18
doi: 10.1136/jmg.4.1.16

Updated information and services can be found at:
http://jmg.bmj.com/content/4/1/16.citation

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/