ONLINE MUTATION REPORT

Spastin gene mutation in Japanese with hereditary spastic paraplegia

I Yabe, H Sasaki, K Tashiro, T Matsuura, T Takegami, T Satoh

Hereditary spastic paraplegia (HSP) is a cluster of genetically heterogeneous disorders that has spastic paraplegia as the central feature.\(^1\) Autosomal dominant HSP (AD-HSP) is also genetically heterogeneous and seven loci have been identified so far on chromosomes 14q (SPG3), 2p (SPG4), 15q (SPG6), 8q (SPG8), 12q (SPG10), 19q (SPG12), and 2q (SPG13).\(^2\) Among them, the SPG4 gene named spastin (GenBank accession No AJ246001) has recently been identified; it is composed of 17 exons and encodes a putative nuclear member of the AAA (ATPases associated with diverse cellular activities) protein family.\(^3\) In the original report, five different mutations were identified in seven families.\(^4\)

HSP is a rare disorder in the Japanese population and the prevalence of SPG4 among Japanese AD-HSP patients is unknown.\(^5\) Only one Japanese family has been reported with an insertion mutation in exon 8 of spastin.\(^6\) In order to assess the frequency of spastin mutations in the Japanese, we analysed mutations in probands from 12 Japanese AD-HSP pedigrees.

SUBJECTS AND METHODS

All of the subjects were neurologically evaluated by the present authors. The diagnosis was based on the neurological findings, a progressive course with an insidious onset, and a positive family history indicating dominant inheritance. Neuroradiological studies were done to exclude other causes of spastic paraplegia. Among the subjects, one was a member of an HSP family that was previously reported to have 2p linked AD-HSP (maximum lod score 3.53).\(^7\) All patients had progressive spasticity in the lower limbs bilaterally and their reflexes were hyperactive. All the patients showed an extensor plantar response. None of them showed extrapyramidal signs, ophthalmoplegia, retinal degeneration, skeletal muscle atrophy, or intellectual disturbance. Superficial sensation was intact, although some patients showed a slight reduction of vibration sensation. The mean age at onset was 35.3 years (SD 15.6, n=12), the range being 10-57 years.

Spinal MRI showed no abnormalities or atrophy of the spinal cord. The mean age at onset between the probands with and without spastin mutation, the mean age at onset was 31.8 years (SD 18.1, n=5), the range being 10-54 years. There was no significant difference in the mean age at onset between the probands with and without spastin mutation by Student’s t test (p=0.53).

RESULTS

Five of the 12 AD-HSP probands were found to have spastin gene mutations (table 1). The five mutations responsible for HSP included three missense mutations (R499C, Q347K, and K388R) and two splice site mutations (1370-1g-t and 1742-1g-t). The proband of the 2p linked family had no mutations in any of the exons or splice junction sites, 5’ upstream 4.8 kb region from the initiator ATG codon or the 3’ non-coding region from the stop codon to the polyadenylation site. In the subjects with spastin mutation, the mean age at onset was 31.8 years (SD 18.1, n=5), the range being 10-54 years.

DISCUSSION

The present study showed that five out of 12 probands with AD-HSP (41.6%) had spastin gene mutations. In the remaining AD-HSP probands (58.4%), such mutations were not detected. This is the first report on the frequency of spastin gene mutation among Japanese patients with AD-HSP. Three out of five mutations, including Q347K and the two splice site mutations, were novel mutations.\(^8\) Each of these novel mutations was segregating with affected members in each family (data not shown). The variety of mutations in our subjects indicates that each pedigree had a different founder.

Recently, Fonknechten et al\(^{14}\) analysed 17 exons of the spastin gene in 87 AD-HSP probands from around the world, but mainly from Europe. They reported that SPG4 accounted for 37% of all AD-HSP. Our estimation of the prevalence of SPG4 in Japanese AD-HSP patients is compatible with their finding.

As in previous reports, the three missense mutations that we found were localised within the functional domain of spastin (the AAA cassette) and were therefore considered to interfere with the functioning of spastin. Two splice site mutations were also detected in the present study. Fonknechten et al\(^{14}\) suggested that the frequency of spastin splice site mutations

Table 1: SPG4 mutations in 12 Japanese probands with AD-HSP

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Location</th>
<th>Mutation</th>
<th>Amino acid change</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>98-175</td>
<td>Exon 13</td>
<td>1620C→T</td>
<td>R499C</td>
<td>Missense</td>
</tr>
<tr>
<td>99-15</td>
<td>Intron 14</td>
<td>1742-1g-t</td>
<td>?</td>
<td>Splicing mutation</td>
</tr>
<tr>
<td>99-33</td>
<td>Intron 14</td>
<td>1742-1g-t</td>
<td>?</td>
<td>Splicing mutation</td>
</tr>
<tr>
<td>99-116</td>
<td>Exon 8</td>
<td>1288A→G</td>
<td>K388R</td>
<td>Missense</td>
</tr>
<tr>
<td>99-175</td>
<td>Intron 9</td>
<td>1370-1g-t</td>
<td>?</td>
<td>Splicing mutation</td>
</tr>
</tbody>
</table>

Amplified PCR products were purified with Microcon\(^{®}\) (Amicon Inc, Beverly, MA, USA) and were sequenced directly using an ABI PRISM 377 DNA sequencing system (Applied Biosystems, Tokyo, Japan).
was significantly higher than in other human genetic
disorders. These mutations are considered to be deleterious
since the result is unstable aberrant transcripts that may lead
to a deficiency of spastin.

In the present study, we could not detect any specific muta-
tion of the spastin gene in the proband of a 2p linked family.
Svenson et al 10 and Fonknechten et al 13 also described similar
cases where no mutation was detected in some 2p linked
families. These findings may indicate that these AD-HSP
patients have mutations in other regions of the spastin gene,
for example, introns, or have mutations of other genes located
nearby. Recently, Higgins et al 21 reported that spastic paraple-
gia could be caused by a 4 base deletion (del TAAT) near the
splice junction in intron 3 of the spastin gene, but this muta-
tion was not detected in our subjects. Further studies are
needed to clarify the molecular mechanisms underlying SPG4.

ACKNOWLEDGEMENTS
We thank the AD-HSP patients for their participation in this study.
This study was supported by a grant for Research on Ataxic Diseases
from the Japanese Ministry of Health and Welfare.

Authors’ affiliations
I Yabe, H Sasaki, K Tsuchiro, Department of Neurology, Hokkaido
University Graduate School of Medicine, N-15 W-7, Kita-ku, Sapporo
060-8638, Japan
T Matsuura, Department of Neurology, Baylor College of Medicine,
Houston, USA
T Takegami, Department of Neurology, Tajimi City Hospital, Tajimi,
Japan
T Satoh, Department of Neurology, Kasai City Hospital, Kasai, Japan

Correspondence to: Dr H Sasaki, Department of Neurology, Hokkaido
University Graduate School of Medicine, N-15 W-7, Kita-ku, Sapporo
060-8638, Japan; hsasaki@med.hokudai.ac.jp

REFERENCES
2 Hazan J, Lamy C, Melki J, Munich A, de Recondo J, Weissenbach J.
Autosomal dominant familial spastic paraplegia is genetically
Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p.
4 Henriot A, Pencak-Vance MA, Lennon F, Wasserman B, Henriot F,
Juneja T, Angrist MH, Hung WY, Boustany RM, Bohleaga S.
Linkage of a locus for autosomal dominant familial spastic paraplegia to chromosome 2p markers.
5 Fink JK, Wu CT, Jones SM, Sharp GB, Lange BM, Lesicki A, Reinglass T,
Varvil T, Offerud B, Lepper M. Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 1q.
6 Hedera P, DiMauro S, Bonilla E, Wald J, Eldredk OP, Fink JK.
Novel locus for autosomal dominant hereditary spastic paraplegia, on chromosome 8q.
7 Reid E, Dearlove AM, Rhodes M, Rubinstein DC. A new locus for
autosomal “pure” spastic paraplegia mapping to chromosome 1q21.3, and
8 Reid E, Dearlove AM, Osborn O, Rogers MT, Rubinstein DC. A locus for
autosomal dominant “pure” hereditary spastic paraplegia maps to chromosome 1q13.
9 Fontaine B, Davoine CS, Durr A, Paternotte C, Feki I, Weissenbach J,
Hazen J, Brice A. A new locus for autosomal dominant pure spastic
10 Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D,
Artiguenave F, Davoine CS, Cruaud C, Durr A, Wincker P, Brozzoli P,
Cattolico L, Barbe V, Boustany RM, Prud’homme JF, Brice A, Fontaine B, Heilig B,
Weissenbach J. Spastin, a novel AAA protein, is altered in the
11 Hirabayama K, Takayama T, Nakamura R, Yanagisawa N, Hattori T,
Kita K, Yanagimoto S, Fujita M, Nagaoka M, Salomura Y, Sabue I,
12 Namekawa T, Takayama Y, Sako K, Shimaoka H, Amaike M, Niijima K,
Nakano I, Niizhizawa M. A large Japanese SPG4 family with a novel
insertion mutation of the SPG4 gene: a clinical and genetic study. J
Autosomal dominant spastic paraplegia linked to chromosome 2p:
14 Fonknechten N, Mavel D, Byrne P, Davoine CS, Cruaud C, Boenscht D,
Samson D, Coutinho P, Hutchinson M, McMonagle P, Boustany RM,
Tartaglia M, Heinitz O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme JF,
15 McMonagle P, Byrne PC, Fitzgerald B, Webb S, Parfrey NA, Hutchinson M.
Phenotype of AD-HSP due to mutations in the SPAST gene:
16 Hentati A, Deng HK, Zhai H, Chen W, Yang Y, Hung WY, Azim AC,
Bohleaga S, Tandan R, Warner C, Liang NG, Cambi F, Mitsuimoto H,
Riob R, Boustany RM, Ben Hamida M, Henriot F, Siddique T.
Novel mutations in spastin gene and absence of correlation with age at onset of symptoms.
17 Burger J, Fonknechten N, Hoeltenbein M, Neumann I, Brakonell F,
Hazen J, Reis A. Hereditary spastic paraplegia caused by mutations in the
18 Lindsey JC, Luther ME, McDermott CJ, White KD, Reid E, Rubinstein DC,
Bashir R, Hazan J, Shaw PJ, Bushby KM. Mutation analysis of the
spastin gene (SPG4) in patients with hereditary spastic paraparesis.
19 De Beldel A, McWilliams S, Auyad D, Echol C, Samboughin N,
Sivakumar K. Novel mutation of the spastin gene in familial spastic
20 Svenson BK, Ashley-Koch AE, Gaskell PC, Ringle JY, Cumming WJK,
Knighton HM, Hogun EL, Boustany RMN, Vance JM, Nance MA,
Pericak-Vance MA, Marchuk DA. Identification and expression analysis of
21 Higgins JJ, Loveless JM, Goswami S, Nee LE, Cozzo C, De Brasse A,
Rosen DR. An atypical intronic deletion widens the spectrum of mutations in
Spastin gene mutation in Japanese with hereditary spastic paraplegia

I Yabe, H Sasaki, K Tashiro, T Matsuura, T Takegami and T Satoh

doi: 10.1136/jmg.39.8.e46

Updated information and services can be found at:
http://jmg.bmj.com/content/39/8/e46

These include:

References
This article cites 21 articles, 5 of which you can access for free at:
http://jmg.bmj.com/content/39/8/e46#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Molecular genetics (1254)
- Neuromuscular disease (257)
- Peripheral nerve disease (97)
- Ethics (220)
- Eye Diseases (298)
- Genetic screening / counselling (886)
- Immunology (including allergy) (604)
- Clinical genetics (257)
- JMG Online mutation reports (168)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/