Comorbid VHL and SCA2 mutations in a large kindred: confounding diagnosis of neurological dysfunction caused by CNS VHL vascular tumours versus SCA2 atrophic neurodegeneration

D E McNeil, W M Linehan, G M Glenn

J Med Genet 2002;39:e37 (http://www.jmedgenet.com/cgi/content/full/39/7/e37)

von Hippel-Lindau disease (VHL, MIM 193300) is an autosomal dominant heritable neoplastic disorder resulting from any one of 163 or more non-polymorphic mutations found in the VHL tumour suppressor gene on chromosome 3p25. Inheritance of a mutated VHL gene predisposes to development of specific types of tumours, including brain and spinal cord haemangioblastoma, renal clear cell carcinoma, pheochromocytoma, retinal angioma, pancreatic neuroendocrine tumour/islet cell carcinoma, endolymphatic sac tumour, and epididymal and broad ligament papillary cystadenoma.

The spinocerebellar ataxias, also referred to as olivopontocerebellar atrophy, are a diverse group of neurodegenerative disorders associated with atrophy and dysfunction of the cerebellum and brain stem. Varying degrees of extracerebellar manifestations including neuropathy and oculomotor disorders, such as slow saccades and/or ophthalmoplegia, have been described.

We present clinical and genetic findings for members of a large kindred with a history of both von Hippel-Lindau disease (VHL) and spinocerebellar ataxia type 2 (SCA2, MIM 183090). It is noteworthy that the combined stresses of these two afflictions weakened a number of the nuclear family units of this kindred resulting in separations of parents, children, and sibs.

METHODS
We studied a multigenerational family with SCA2 and VHL (fig 1). Index family members contacted the National Cancer Institute for screening. They were enrolled in an institutional review board (IRB) approved study of von Hippel-Lindau disease, after reviewing and signing informed consents as well as receiving counselling. Through efforts of the first family members screened, other family members were contacted and informed of our programme for clinical and genetic diagnostic screening.

Abbreviations: VHL, von Hippel-Lindau disease; SCA2, spinocerebellar ataxia type 2; OPCA, olivopontocerebellar atrophy; HIF, hypoxia inducible factor; VEGF, vascular endothelial growth factor

Figure 1 Family pedigree. VHL is represented by black symbols. Persons with a + superscript have both CNS (including retinal angiomas) and renal involvement. Persons with a – superscript have only renal involvement. Persons with an O superscript have only CNS involvement, including retinal involvement. Persons represented by black symbols without designation of involved site were found to have VHL by genetic testing not clinical findings. SCA2 is represented by grey symbols. Persons with both conditions are represented by symbols that show both colours. II.16 committed suicide.
not known to have had either VHL or SCA2. Two of these children died in infancy. No medical history is available on her last born child, who was adopted shortly after birth. Two of her children were placed into foster care before her husband’s death. After the death of her husband, five of her remaining children were put into foster care and later placed into adoptive homes. Patient I.1 died of pneumonia aged 54 years.

Patient II.26
Patient II.26 was seen as part of the von-Hippel Lindau screening programme at the National Institutes of Health/ Clinical Center (NIH/CC). He had been discovered to have VHL at the age of 34 after detection of a haemangioblastoma in the cerebellum that was surgically resected followed by postoperative radiation treatment. The following year, he had an oesophageal abnormality that was treated with vagotomy. At the age of 44, he had bilateral clear cell renal cancer resulting in a right partial nephrectomy and left total nephrectomy. The same year he had spinal surgery to treat a syrinx associated with a spinal cord haemangioblastoma. He has baseline tachycardia thought by the cardiologist to be most likely secondary to autonomic dysfunction. The screening done at NIH/CC was notable for cystic lesions in the pancreas. On scrotal ultrasound examination, he had a multicystic mass above his left testis consistent with epididymal cystadenoma. By history, the mass had first been noted while he was in his teens. He had multiple, tiny, enhanced nodules consistent with haemangioblastomas posterior to the medulla with cysts spaying the medulla (fig 2) and haemangioblastomas were also in the cervical and thoracic spine. After genetic counselling had been given and informed consent was received, a blood specimen was sent for analysis of the VHL gene mutation. She was found to have a deletion of A at nucleotide 688 of the von Hippel-Lindau gene, identical to that found in her uncle, patient II.26. In light of the reported family and personal history of OPCA, molecular analyses were performed on gene known to cause spinocerebellar ataxia in order to delineate the genetics of her condition further. She was found to have an abnormal increase in CAG repeats in one allele of her ataxin-2 gene. This abnormal trinucleotide expansion is consistent with the diagnosis of spinocerebellar ataxia type 2. The normal number of CAG repeats ranges from 15 to 29. This patient had one normal allele with 22 repeats presumably from her unaffected father. Her second allele for the ataxin-2 gene contained 41 CAG repeats which is well into the abnormal range and consistent with her symptoms and signs on neurological examination and neuroimaging.

DISCUSSION
This kindred is notable for the inheritance of two autosomal dominant genetic mutations with the potential for confounding diagnoses and comorbid neurological effects. VHL is known to affect certain organ systems specifically. However, the diagnosis according to phenotype can be difficult owing to the variable time of onset of each of the disease manifestations. The diagnosis has traditionally been made through the use of family history data as well as through evaluation of the organ systems that are most likely to become affected. In general, the central nervous system manifestations precede the renal lesions. Renal cell carcinoma is often occult for many years and usually detected in the third decade of life, but onset at 15 years is also known. Haemangioblastomas of brain and spinal cord are often diagnosed when symptomatic, with most being detected in the second decade of life, but a diagnosis in an 11 year old has been reported.

Presymptomatic screening programmes have been proposed that include neurological examinations, laboratory and imaging studies of tumour prone organ sites, and yearly eye examinations. Recommendations for the central nervous system call for MRIs of the head and spine to be done every two to three years in asymptomatic carriers. Molecular biology techniques can now be used in order to predict whether family members of known carriers are likely to be affected with the condition.

This large kindred is of interest because of the presence of a comorbid genetic mutation causing SCA2 and the potential to have its diagnosis confounded by the symptoms arising from...
growth factor (HIF) responsive genes, induction of angiogenic peptides encoded by hypoxia inducible factor (HIF) being required for haemangioblastoma development and renal cell carcinoma susceptibility. It is interesting that at the age of 32, patient III.9 with severe atrophy of the cerebellum, brain stem, and cervical spine, does not have the haemangioblastomas common in VHL and present in her uncle. The VHL mutation that they share obviously can cause CNS haemangioblastomas. It is possible that the severe cerebellar atrophy related to her SCA2 inhibits the angiogenesis needed for the development of highly vascular haemangioblastomas. Recent reports point out that the vascularity of VHL neoplasms is the result of overproduction of angiogenic peptides encoded by hypoxia inducible factor (HIF) responsive genes, with impaired degradation of HIF-alpha being required for haemangioblastoma development and renal cell carcinoma susceptibility. This family's VHL gene mutation in the elongin binding domain would inhibit formation of the tetramer pVHL/elongin C/elongin B/Cul2 (VCBC), thus impairing degradation of HIF-alpha and allowing development of haemangioblastomas and renal cell carcinoma. The hypoxia inducing gene, vascular endothelial growth factor (VEGF), is over-expressed in haemangioblastomas owing to mutational inactivation of the VHL gene. Under normoxic conditions, mutations in the VHL gene lead to increase in angiogenesis in the brain, kidney, and eye. When VHL deficient cell lines had reintroduction of a functional VHL gene, the instability of HIF alpha proteins under normoxic conditions was restored. It is unknown whether anti-angiogenesis or anti-vasoendothelial growth conditions and factors (VEGF) exist in this patient's atrophia, presumably hypovascular and hypoxic cerebellum, which may inhibit or suppress haemangioblastoma development.

Spino-cerebellar ataxias are a group of hereditary, progressive neurodegenerative disorders associated with a variety of phenotypic presentations, including cerebellar ataxia, ophthalmoplegia, and peripheral neuropathy. The most common site of brain tumours in VHL is the cerebellum, and may cause a slowly progressive ataxia as does SCA2. It is interesting that at the age of 32, patient III.9 with severe atrophy of the cerebellum, brain stem, and cervical spine, does not have the haemangioblastomas common in VHL and present in her uncle. The VHL mutation that they share obviously can cause CNS haemangioblastomas. It is possible that the severe cerebellar atrophy related to her SCA2 inhibits the angiogenesis needed for the development of highly vascular haemangioblastomas. Recent reports point out that the vascularity of VHL neoplasms is the result of overproduction of angiogenic peptides encoded by hypoxia inducible factor (HIF) responsive genes, with impaired degradation of HIF-alpha being required for haemangioblastoma development and renal cell carcinoma susceptibility. This family's VHL gene mutation in the elongin binding domain would inhibit formation of the tetramer pVHL/elongin C/elongin B/Cul2 (VCBC), thus impairing degradation of HIF-alpha and allowing development of haemangioblastomas and renal cell carcinoma. The hypoxia inducing gene, vascular endothelial growth factor (VEGF), is over-expressed in haemangioblastomas owing to mutational inactivation of the VHL gene. Under normoxic conditions, mutations in the VHL gene lead to increase in angiogenesis in the brain, kidney, and eye. When VHL deficient cell lines had reintroduction of a functional VHL gene, the instability of HIF alpha proteins under normoxic conditions was restored. It is unknown whether anti-angiogenesis or anti-vasoendothelial growth conditions and factors (VEGF) exist in this patient's atrophy, presumably hypovascular and hypoxic cerebellum, which may inhibit or suppress haemangioblastoma development.
Hippel-Lindau disease: genetic, clinical and imaging features.

Linehan WM, Lerman M. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe and Japan.

Comorbid VHL and SCA2 mutations in a large kindred: confounding diagnosis of neurological dysfunction caused by CNS VHL vascular tumours versus SCA2 atrophic neurodegeneration

D E McNeil, W M Linehan and G M Glenn

J Med Genet 2002 39: e37
doi: 10.1136/jmg.39.7.e37

Updated information and services can be found at: http://jmg.bmj.com/content/39/7/e37

References

This article cites 21 articles, 3 of which you can access for free at: http://jmg.bmj.com/content/39/7/e37#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

- Screening (oncology) (234)
- Movement disorders (other than Parkinsons) (49)
- Paediatric oncology (126)
- Epidemiology (630)
- Reproductive medicine (519)
- Drugs: endocrine system (107)
- Ethics (220)
- Eye Diseases (298)
- Molecular genetics (1254)
- Pancreas and biliary tract (110)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/