Towards a suggestive facial dysmorphism in adenylosuccinate lyase deficiency?

M Holder-Espinasse, S Marie, G Bourrouillou, I Ceballos-Picot, M-C Nassogne, L Faivre, J Amiel, A Munnich, M-F Vincent, V Cormier-Daire

ADENYLOSUCCINATE LYASE DEFICIENCY (MIM 103050, ADSL) IS A RARE AUTOSOMAL RECESSIVE DISEASE CAUSING SEVERE MENTAL RETARDATION AND/OR AUTISTIC FEATURES.

CASE REPORT

The proband, a girl, was the first child of unrelated parents, born after an uneventful term pregnancy. Her birth weight was 3800 g, length was 49 cm, and head circumference was 35 cm. Hypotonia was noted at 6 months of age. She presented with seizures at 20 months, which were not controlled by valproate and clonazepam but by lamotrigine only. She was first referred to our genetic clinic at 27 months of age for mental retardation and facial dysmorphism. She could not sit unaided, she was hypotonic, and she had no speech. Dysmorphic features included small head circumference (~2 SD), brachycephaly, flat occiput, prominent metopic suture, intermittent divergent strabismus, small nose with anteverted nostrils, long and smooth philtrum, and thin upper lip. All of these dysmorphic features to our patient, namely brachycephaly, prominent metopic sutures, small nose with anteverted nostrils, long, smooth philtrum, and thin upper lip. All of these features, characteristic of metabolic disorders, have been described in mitochondrial disorders (respiratory chain deficiencies), peroxysomal disorders, and could be the result of either toxicity of the abnormal metabolite accumulation or the direct effect of the primary enzyme deficiency. The simplicity of the urinary screening test should allow consideration of this diagnosis when dealing with the association of developmental delay, dysmorphic features, and seizures.

DISCUSSION

Dysmorphic features have not previously been mentioned in ADSL deficiency. We have had the opportunity to analyse pictures of another case of an ADSL deficient child previously reported by Nassogne et al.5 Here, we report on a novel case of adenylosuccinate lyase deficiency, sharing a number of clinical features with previously reported cases, and emphasise the facial dysmorphic features hitherto unreported in this condition.

The association of severe developmental delay with seizures was suggestive of a metabolic disorder. The modified Bratton-Marshall urinary test was positive, suggesting ADSL deficiency. This diagnosis was confirmed by measurement of urine and cerebrospinal fluid (CSF) SAICAr and S-Ado by HPLC. Urinary SAICAr and S-Ado concentrations were 4.18 and 3.86 pmol/mg creatinine, respectively, and CSF SAICAr and S-Ado concentrations were 376 and 367 µmol/l, respectively. The SAICAr/S-Ado ratio was 0.92 in urine and 0.97 in CSF. Finally, molecular analyses of the ADSL gene showed compound heterozygosity for ADSL mutations (M1L and R374W). The mother was found to be heterozygous for the M1L and the father for the R374W mutations.

Abbreviations: ADSL, adenylosuccinate lyase deficiency; SAICAR, succinylaminoimidazolcarboxamide ribotide; AICAR, aminoimidazole carboxamide ribotide; S-AMP, adenylosuccinate; AMP, adenosine monophosphate; S-Ado, succinyladenosine; SAICAr, succinylaminoimidazolcarboxamide riboside; HPLC, high performance liquid chromatography
REFERENCES

Figure 1 Pathways of purine metabolism.

AICAR: amnioimidazole carboxamide ribotide
SAICAR: succinyl-amnioimidazole carboxamide ribotide
S-Ado: succinyladenosine
AMP: adenosine monophosphate
S-AMP: adenylosuccinate (succinyl AMP)
GMP: guanosine monophosphate
IMP: inosine monophosphate
XMP: xanthosine monophosphate
PRPP: phosphoribosyl pyrophosphate
ENZYMES: 1 = cytosolic 5’-nucleotidase
type lyase
3 = adenylosuccinate synthetase
4 = IMP dehydrogenase
5 = GMP synthetase
6 = AMP deaminase
7 = adenosine deaminase
8 = purine nucleoside phosphorylase
9 = xanthine dehydrogenase
10 = guanine deaminase
11 = hypoxanthine-guanine phosphoribosyl transferase
12 = adenine phosphoribosyl transferase
13 = adenosine kinase

Figure 2 Facial dysmorphism in our case. Note the brachycephaly, prominent metopic sutures, small nose with anteverted nostrils, the long and smooth philtrum, and poorly modelled and low set ears.

Figure 3 Facial dysmorphism in the case reported by Nassogne et al.16 Note the small nose with anteverted nostrils, the long philtrum, and the thin upper lip.

Key points
- Adenylosuccinate lyase deficiency (MIM 103050, ADSL) is a rare autosomal recessive disease causing mental retardation, seizures, and autistic features. The diagnosis is based on the detection of the dephosphorylated SAICAR and S-AMP products and the modified Bratton-Marshall test is a simple urinary screening test.
- Here, we report on a new case of adenylosuccinate lyase deficiency presenting with mental retardation, seizures, and facial dysmorphism and having brachycephaly, prominent metopic suture, a small nose with anteverted nostrils, long and smooth philtrum, thin upper lip, and low set ears.
- The analysis of another previously reported child with ADSL shows the same dysmorphic features, which could be the result of toxicity of the abnormal metabolite accumulation.
- We conclude therefore that the diagnosis of ADSL should be considered when dealing with the association of developmental delay, dysmorphic features, and seizures.
Towards a suggestive facial dysmorphism in adenylosuccinate lyase deficiency?

M Holder-Espinasse, S Marie, G Bourrouillou, I Ceballos-Picot, M-C Nassogne, L Faivre, J Amiel, A Munnich, M-F Vincent and V Cormier-Daire

doi: 10.1136/jmg.39.6.440

Updated information and services can be found at:
http://jmg.bmj.com/content/39/6/440

These include:

References
This article cites 20 articles, 2 of which you can access for free at:
http://jmg.bmj.com/content/39/6/440#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epilepsy and seizures (197)
- Epidemiology (630)
- Eye Diseases (298)
- Metabolic disorders (329)
- Reproductive medicine (519)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/