Behavioural complaints in participants who underwent predictive testing for Huntington’s disease

M-N W Witjes-Ané, A H Zwinderman, A Tibben, G-J B van Ommen, R A C Roos

LETTER TO JMG

Changes in mood and behaviour form the most variable symptoms of the clinical characteristics of Huntington’s disease (HD). Although the diagnosis is usually based on motor signs, behavioural changes occur as a first manifestation of HD in up to half of the patients. Irritable behaviour, aggression, and depression are most commonly seen in the first phase of the disease. Anxiety, obsessions, and apathy are also extremely common in HD. In certain families, major affective disorders may appear as early as 20 years before the onset of chorea and dementia. However, with regard to the manifestation of psychiatric signs, there is a known difficulty in distinguishing between an intrinsic and a reactive pattern. The action of the disease is often intertwined with the reaction to the disease in diagnosed patients but also in “asymptomatic” (that is, absence of motor signs) subjects carrying the expansion of the CAG triplet repeat (henceforth referred to as “carriers” compared to “non-carriers”). As far as we are aware, only two studies have been reported regarding psychiatric symptoms in asymptomatic carriers compared to non-carriers. A controlled psychiatric study reported by Shiwach and Norbury showed that there was no significant increase in affective disorder in the former group. However, the whole predictive tested group showed a higher prevalence of psychiatric episodes than their partners. According to the authors it is, therefore, not plausible that depression is an early sign of HD in asymptomatic carriers. Depression and feelings of helplessness are indeed usually seen as a consequence of stressful events related to HD, like predictive testing in both carriers and non-carriers, even years after the predictive test result. Many studies have been reported on mood changes as a reactive pattern in both carriers and non-carriers, but behavioural changes as a plausible first manifestation of HD have not been the subject of such extensive investigation. Only Berrios et al. reported higher measures of irritability in neurologically asymptomatic carriers, suggesting that this symptom can appear very early in the course of HD. The focus of most investigators in this group has been directed more towards cognitive and motor functioning.

Differentiating between the behavioural changes inherent in HD and the well known impact of DNA testing is important in view of studying early markers of the disease onset. This is in line with Paulsen et al. who stated “Careful study of neuropsychiatric symptoms associated with HD is essential to help distinguish features that are pathognomonic from behaviours that are sensitive but not specific of the disease”.

Therefore in the present explorative study, we investigated the following issues.

- Is there a difference between carriers and non-carriers in the outcome of the UHDRS behavioural assessment?
- Do age and gender play a role in developing behavioural complaints?
- Are a psychiatric history and the interval between DNA testing and first assessment associated with the development of behavioural complaints?
- Is there a change in behavioural complaints in carriers after 18 months? Do these differ from non-carriers?

Key points

- Huntington’s disease (HD) is characterised by involuntary movements, dementia, and psychiatric signs, the latter occurring as a first manifestation of the disease in up to half of the patients. However, diagnosis is usually based on the motor symptoms.
- In this explorative study, we compared the occurrence of behavioural complaints in 46 identified carriers for HD and in 88 non-carriers by single blind administration of the Unified Huntington’s Disease Rating Scale (UHDRS). Follow up was performed after 18 months in 114 participants.
- No significant differences were found between carriers and non-carriers in demographics or neurological motor signs according to the UHDRS.
- Carriers complained more than non-carriers about sadness, low self-esteem, aggressive behaviour, and compulsions. This was mostly seen in women and persons aged 30 to 49 years. Carriers in this age group did not express significantly more anxiety than non-carriers. Younger non-carriers (20-29 years) were found to be more anxious than older ones.
- A history of depression and the interval between predictive testing and first assessment were associated with behavioural complaints in the non-carrier group only.
- At follow up after 18 months, carriers still complained about aggression, while complaints about mood and low self-esteem had disappeared.
- We speculate that aggressive behaviour in our carrier group may be seen as an initial sign intrinsic to HD, while the presence of complaints about mood and low self-esteem seems to be related to the impact of the predictive test. However, owing to the explorative nature of our study, we do not suggest that phenoconversion has occurred. Research focusing on the early detection of behavioural changes, using a broader instrument, is still indispensable.

Longitudinal investigation is needed because of the diagnostic inaccuracy in cross sectional assessment of patients, one reason being the variability in presentation early in the disease. Also, knowledge about the progression of psychiatric, motor, and cognitive symptoms and their relationship is essential for research into neuroprotective treatments.

METHODS

Participants

Since the availability of direct mutation analysis between 1993 and 1998, 370 people with a 50% risk of developing
Huntington’s disease have travelled from all over The Netherlands to Leiden to undergo presymptomatic testing. Applicants were considered positive for HD when the number of (CAG) copies exceeded 35 repeats. Applicants with a repeat containing fewer than 27 copies were considered to be non-carriers. Those with a repeat number between 27 and 35 were considered intermediate.

Applicants who were or who became symptomatic and, consequently, for whom DNA testing was confirmatory, were not invited to participate in this study (n=10). Between November 1997 and January 1999, 134 subjects (36% of the total group tested) underwent the initial assessment in this single blind study. The percentage of carriers who participated was lower (34%) compared to the whole group who applied for DNA testing (44%). There were no demographic differences between this group and non-participants. However, there was a minority of carriers between 40 and 60 years in the group of non-carriers. Those with a repeat number between 27 and 35 were considered intermediate.

Twelve participants had previously undergone the linkage test and received direct testing after 1993. For seven participants, the study design was double blind because they did not yet know the outcome of their DNA test on entry. Three participants had an intermediate result (CAG repeats 30, 30, 34) and were included in the present study in the non-carrier group, as they are unlikely to develop the disease.

The study was approved by the Medical Ethics Committee of the LUMC and all participants gave their informed consent.

Measures

All participants were requested not to disclose the result of the predictive test to the investigators. The protocol consisted of using open questions about complaints in daily functioning, categorised by a psychological assistant and a psychologist (MNWA) into memory, concentration, motor, affect, behaviour, somatic, and others. Furthermore, the Unified Huntington’s Disease Rating Scale (UHDRS) and an extended neuropsychological assessment were evaluated. The protocol lasted for about four hours (break included). The second protocol was performed 18 months later with the exception of the medical history from the UHDRS, an intelligence test, and two memory tests. This shortened version of the protocol took about two hours.

UHDRS

The UHDRS comprises questions about medical history, a motor examination, a cognitive assessment, a behavioural assessment, an assessment of functional ability, and completion of a medication form. There is a high degree of internal consistency within each of the domains and it is a valid instrument for assessing the clinical features of HD. Furthermore, it appears to be appropriate for repeated administration during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes.

The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes. The scores of the motor tests, assessed by a neurologist (JPPvV/RACR), were summed in a total motor score and a diagnosis was filled during clinical studies and for tracking changes.

Table 1 Group characteristics of 134 participants

<table>
<thead>
<tr>
<th>DNA test</th>
<th>Carriers (n=46)</th>
<th>Non-carriers (n=88)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender, M/F</td>
<td>16/30</td>
<td>40/48</td>
<td>0.23*</td>
</tr>
<tr>
<td>Age at NPA, mean (range), years</td>
<td>39 (21–66)</td>
<td>42 (18–64)</td>
<td>0.16†</td>
</tr>
<tr>
<td>Education</td>
<td>4 (9%)</td>
<td>6 (7%)</td>
<td></td>
</tr>
<tr>
<td>Secondary school</td>
<td>29 (63%)</td>
<td>56 (64%)</td>
<td>0.78‡</td>
</tr>
<tr>
<td>Number of CAG repeats, median (range)</td>
<td>13 (28%)</td>
<td>26 (30%)</td>
<td></td>
</tr>
<tr>
<td>Age in years at DNA result, mean (range)</td>
<td>39 (18–62)</td>
<td>36 (18–62)</td>
<td>0.09†</td>
</tr>
<tr>
<td>Time interval in months between DNA result and first NPA (n=127), median (range)</td>
<td>43 (1–60)</td>
<td>36 (0–61)</td>
<td>0.02‡</td>
</tr>
<tr>
<td>History of depression, yes/no¶</td>
<td>14/30</td>
<td>18/70</td>
<td>0.15*</td>
</tr>
<tr>
<td>Use of neuroleptics</td>
<td>0.15*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antidepressive drugs</td>
<td>2 (4%)</td>
<td>4 (5%)</td>
<td></td>
</tr>
<tr>
<td>Anxiolytic drugs</td>
<td>3 (7%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Chi-square test; †t-test; ‡Mann-Whitney test.
¶Seven DNA results not yet known at time of neuropsychological assessment (NPA).
†Two missing.

Table 2 Mean of complaints assessed using the behavioural part of the UHDRS

<table>
<thead>
<tr>
<th>DNA test</th>
<th>Carriers (n=45)</th>
<th>Non-carriers (n=88)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHDRS behavioural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadness</td>
<td>2.58 (3.56), 0–16</td>
<td>1.33 (2.77), 0–16</td>
<td>0.01</td>
</tr>
<tr>
<td>Self-esteem</td>
<td>2.18 (4.04), 0–16</td>
<td>0.74 (2.09), 0–9</td>
<td>0.007</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1.51 (2.94), 0–12</td>
<td>1.21 (0.63), 0–10</td>
<td>0.76</td>
</tr>
<tr>
<td>Suicidal thoughts</td>
<td>0.42 (1.64), 0–9</td>
<td>0.03 (0.24), 0–2</td>
<td>0.08</td>
</tr>
<tr>
<td>Aggression</td>
<td>1.51 (3.48), 0–16</td>
<td>0.38 (1.5), 0–9</td>
<td>0.04</td>
</tr>
<tr>
<td>Irritable behaviour</td>
<td>1.56 (3.37), 0–16</td>
<td>1.15 (2.65), 0–16</td>
<td>0.98</td>
</tr>
<tr>
<td>Obsessions</td>
<td>0.69 (2.35), 0–12</td>
<td>0.34 (1.65), 0–9</td>
<td>0.07</td>
</tr>
<tr>
<td>Compulsions</td>
<td>0.64 (2.29), 0–12</td>
<td>0.23 (1.75), 0–16</td>
<td>0.03</td>
</tr>
</tbody>
</table>

*Mann-Whitney test.
sometimes; 3 = frequently; 4 = almost always). The behavioural part was reported orally by the participant only. The assessment was structurally performed by a trained psychological assistant and afterwards discussed under the supervision of a psychologist (MNWA).

Statistical analysis
Data were analysed using the Statistical Package for Social Sciences (SPSS), version 10. To reduce the number of variables, the products of severity and frequency were calculated for each symptom. Variables that were not normally distributed were analysed with non-parametric tests. Differences between carriers and non-carriers during baseline and follow up were examined with Student’s t test, chi-square test, Fisher’s exact test, and Mann-Whitney U test, where appropriate. Spearman’s rank correlation was calculated to analyse behavioural complaints in relation to motor functioning and age and with the interval between DNA testing and first assessment. Age was kept for this purpose as a continuous variable. Afterwards, age was classified into three subgroups (<29 years, 30-49 years, ≥50 years) for further investigation of the group close to probable age of onset. The Wilcoxon signed ranks test was used to study changes within groups after 18 months. The Mann-Whitney U test was performed to investigate differences over time between carriers and non-carriers. Significance level was set at 0.01 while marginal findings are reported with a more liberal p level (<0.05).

RESULTS
Group characteristics
The group characteristics are described in table 1. The time interval between DNA testing and this study was marginally longer in carriers compared to non-carriers. Neither group showed significant differences in other variables.

Assessment of spontaneously reported complaints in daily functioning showed marginal differences in affect (15% carriers and 5% non-carriers) and behaviour (9% of the carriers reported irritability and/or aggression while 1% non-carriers mentioned anxiety) (Fisher’s exact test, p=0.05).

Carriers did not differ significantly from non-carriers with respect to the diagnosis based on the UHDRS motor assessment (n = 124, Mann-Whitney U test, p=0.15).11

Comparison between carriers and non-carriers in behavioural complaints
Table 2 shows that carriers complained significantly more than non-carriers of sadness and low self-esteem and marginally in aggression and compulsions. Means are reported because the value of nearly all medians was zero. None of the participants complained about delusions or hallucinations. Spearman’s rank correlation was performed to ensure that the differences found between the two groups were not because of the few carriers discovered to be motor affected. Marginal association with diagnosis based on the motor assessment and the total motor score was only found in non-carriers for low self-esteem (r=0.22, p=0.05; r=0.25, p=0.02).

The role of age and gender in the occurrence of behavioural complaints
Age
In carriers no correlation was found between age and behavioural complaints. However, in the age category 30-49 years, carriers (n=30) complained significantly more about low self-esteem and guilt (p=0.008) and marginally about aggression (p=0.03) compared to non-carriers (n=46). Older carriers (>50 years, n=8) reported significantly more complaints concerning sadness (p=0.007) and obsessions (p=0.009) than older non-carriers (n=27). Younger carriers (<29 years, n=7) reported marginally more irritable behaviour (p=0.04) compared to non-carriers of similar age (n=15).

In non-carriers, age correlated marginally with anxiety (r=-0.23, p=0.03). The percentage of younger non-carriers reporting this complaint was higher than those over 50 years of age (50% vs 11%).

Gender
Gender differences were not apparent in the total group, nor when we looked at carriers and non-carriers separately. No differences were found between male carriers and male non-carriers. Female carriers, however, complained marginally more about sadness (p=0.03), low self-esteem (p=0.01), and aggression (p=0.02) than female non-carriers.

Influence of psychiatric history on the development of behavioural complaints
Participants were asked about the presence of a psychiatric history for depression, obsessive-compulsive disorder, psychosis, suicidal ideation, and suicidal attempt (UHDRS items 34-36, yes/no answer). Thirty-two percent of the carriers reported a history of depression and 21% of the non-carriers (NS) (table 1). Five carriers (11%) and four non-carriers (5%) used medication (table 1). There was no significant relationship between intake of neuroleptics and history of depression (r=0.005, p=0.96).

Fig 1 illustrates the mean occurrence of behavioural complaints among participants with and without a history of depression. A history of depression was only associated with behavioural complaints among the non-carriers. Participants from this group with a history of depression differed significantly from participants without as far as sadness (p=0.008), low self-esteem (p=0.000), and anxiety (p=0.000) were concerned, and marginally in obsessions (p=0.02). Suicidal ideation in the past did not differ between the groups. A history of obsessive-compulsive disorder, psychosis, or attempted suicide was never reported.

Influence of time interval between DNA testing and first assessment
In the non-carriers, significant positive correlations were seen with aggressive behaviour (r=0.29, p=0.007) and with irritable behaviour (r=0.36, p=0.001). No correlations were found in the carrier group between time since DNA testing and behavioural complaints.
Comparison of behavioural complaints between baseline and follow up for both carriers and non-carriers

After 18 months, 114 (85%) participants had returned to our department for follow up. Reasons for drop out were the following: no response to second recruitment (four carriers and six non-carriers), private circumstances (one non-carrier), the protocol was too demanding (two carriers), it was of no use to do it (two carriers), no time (one non-carrier), no benefit (one non-carrier), not tracked down (one non-carrier), no reason (one carrier), and dead (one carrier). Three of the carriers who dropped out were rated during baseline as either having probable or unquestionable motor symptoms characteristic of HD.

There were no significant differences in demographics between carriers (n=36) and non-carriers (n=78). The shorter duration of the protocol meant that the neurologists had less of an opportunity to attend the investigation. Consequently, a motor performance was assessed on 28 carriers and 53 non-carriers. Carriers differed marginally in the diagnosis (p=0.04). This group showed slightly more “minor soft motor signs” than during the first protocol (24% instead of 21%) while non-carriers showed fewer “minor soft motor signs” (14% instead of 21%). Three of the carriers who dropped out were rated during baseline as either having probable or unquestionable motor symptoms characteristic of HD.

Table 3 Mean change of behavioural complaints in carriers and non-carriers 18 months after baseline

<table>
<thead>
<tr>
<th>DNA test</th>
<th>Carriers (n=35)</th>
<th>Mean* (SD), range</th>
<th>Non-carriers (n=78)</th>
<th>Mean* (SD), range</th>
<th>p†</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHDRS behavioural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadness</td>
<td>0.66 (3.09), −6−7</td>
<td>0.28 (3.15), −12−16</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-esteem‡†</td>
<td>1.09 (2.67), −1−12</td>
<td>0.32 (2.04), −4−9</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>0.02 (4.22), −12−12</td>
<td>0.22 (3.62), −12−16</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suicidal thoughts</td>
<td>0.01 (0.87), −4−3</td>
<td>0.01 (0.34), −2−2</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aggression</td>
<td>0.29 (2.48), −8−9</td>
<td>0.03 (3.77), −4−9</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irritable behaviour</td>
<td>0.11 (3.03), −6−9</td>
<td>0.15 (2.66), −6−9</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obsessions</td>
<td>−0.37 (2.09), −9−5</td>
<td>0.08 (2.29), −12−9</td>
<td>0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsions</td>
<td>0.29 (3.2), −10−12</td>
<td>−0.14 (2.36), −9−16</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Higher score = fewer complaints (baseline minus follow up).
†Mean changes over time between the two groups (Mann-Whitney test).
‡Significantly fewer complaints in carriers (Wilcoxon signed ranks test: p=0.007).

In our study group, female carriers differed marginally from female non-carriers in sadness, low self-esteem, and aggressive behaviour and the interval since DNA testing to HD, as expected by these test participants. Other studies showed that the test result in some non-carriers did not alleviate problems or worries not related to HD, as expected by these test participants.

The occurrence of a history of depression was similar in the two groups. This may represent “regular” depression found in a large proportion of the population. Studies showed that people with a psychiatric history were more at risk of maladjustment following the test. (Vancouver group in Evers-Kiebooms and Decruyenaere). However, the contribution of a history of depression in developing behavioural complaints was only evident in non-carriers (sadness, low self-esteem,
and anxiety). Surprisingly, in our study carriers with a history
did not differ from carriers without one. These findings, again,
might be because of lesser power of the subgroup. Another
possible explanation would be in line with Berrios et al.30 who
reported discrepancies in factor structure of the psychiatric
morbidity found in carriers, comprising “personality” (extra-
punitive, dominance, intrapunitive, outward and inward
irritability) and non-carriers, comprising “anxiety”. The
authors suggest that the psychiatric morbidity affecting carri-
ers may be the result of a subtle interaction between genetic
factors and environment (for example, disturbed upbringing)
whereas non-carriers would only be subjected to the latter,
which would include anxiety.

The interval between predictive testing and the time of our
study was not significantly associated with the presence of
behavioural complaints in the carrier group. Other studies
have reported that post-test intrusion level, hopelessness, and
depressive symptoms disappear after one year.16 17 Also,
carriers and non-carriers were reported not to differ signifi-
cantly in the long term (three years after disclosure of the
DNA test) with regard to change from baseline on the investi-
gated psychological variables (intrusive thoughts, avoidance
of thoughts, and hopelessness).16 17 These authors are in line
with Wiggins et al.18 who concluded that predictive testing has
maintained or even improved the psychological well being of
carriers. The test result reduced uncertainty and provided an
opportunity for appropriate planning.19 Codori et al.20 21 suggest
that those who ask for the test are self-selected and believe
they can cope better with a bad result. However, participants
who underwent the direct mutation test had more depressive
symptoms at all follow ups than those tested for linkage, even
in the non-carrier group.17

In summary, owing to the explorative nature of our study,
we can only speculate that aggressive behaviour in our carrier
group may be seen as an initial sign intrinsic to HD while
mood and low self-esteem complaints are more likely to be a
reaction to the predictive test. Of course, as shown in other
published reports, depression is a clinical manifestation of
HD,22 but unfavourable genetic information does not generally
produce syndromes of clinical depression.11 The participants in
our study did not present with these characteristics. The high-
est percentages in our group of carriers were seen in the cat-
egories slight and mild with the exception of low self-esteem
and aggression, which showed approximately the same
percentage in the categories slight, mild, moderate, and severe.
Our findings about the occurrence of aggression in our carrier
group are not as striking as reported by Berrios et al.,16 and we
do not suggest that phenocconversion has already occurred. In
this study, we wanted to assert the fact that research in early
detection of psychiatric signs is indispensable so that patients
and family can be informed how to cope with these stressful
manifestations of HD. Until now, this issue has been in the
background compared to research in motor and cognitive
functioning. This was the reason that our study was limited to
the behavioural assessment of the UHDRS. The recent
development of the Problem Behaviours Assessment for
Huntington Disease (PBA-HD)23 may well resolve the lack, so
of, a broader instrument than the UHDRS. This semi-

terview appears to be more suitable for investigating and
descending the prevalence of behavioural symptoms. A review
by Naarding et al.24 shows that most published studies on this
subject are disappointing because of the lack of diagnostic
criteria and adequate rating scales. The investigation of carri-
ers and the comparison with patients at different stages of the
disease, relating behavioural complaints to cognitive and
motor signs, should further enhance our insight into the early
disease processes.

ACKNOWLEDGEMENTS

Financial support was provided by the Netherlands Organisation for
Scientific Research (NWO) grant 970-10-021 and in part by “Stichting
Duyun en Rhyn”. Katwijk M Veeger-van der Vlis is thanked for her help in
selecting potential participants and for providing information
required with discretion. We are grateful to J P P van Vugt for assessing
the motor part of the UHDRS and to P G Zitman and J B K Lanser
for their helpful comments on the manuscript. The help of A Krijnen,
M v d Heijden, P J Tatelaar, F Gronheid, I Forladis, and E de Wilde is
gratefully acknowledged in assessing the protocols, as is the
assistance of J de Vreugd, especially with data processing.

Authors’ affiliations

M W Witjes-Ané, A Tibben, R A C Roos, Department of Neurology,
Leiden University Medical Centre, Leiden, The Netherlands
A H Zwinderman, Department of Medical Statistics, Leiden University
Medical Centre, Leiden, The Netherlands
A Tibben, Departments of Clinical Genetics and Neurology, Leiden
University Medical Centre, Leiden, The Netherlands
G-J B van Ommen, Department of Human Genetics, Leiden University
Medical Centre, Leiden, The Netherlands

Correspondence to: Dr M N W Witjes-Ané, Leiden University Medical
Centre, Department of Neurology-Neuropsychology, J3R, PO Box 9600,
2300 RC Leiden, The Netherlands; m.n.w.ane@lumc.nl

REFERENCES

1 Caine ED, Shoulson I. Psychiatric syndromes in Huntington’s disease.
2 De Marchi N, Menella R. Huntington’s disease and its association with
3 Mendez MF. Huntington’s disease: update and review of
4 Webb M, Trzepacz PT. Huntington’s disease: correlations of mental
5 Folstein SE, Abbott MH, Chase GA, Jensen BA, Folstein MF. The
association of affective disorder with Huntington’s disease in a case
6 Berrios GE, Wagle AC, Markova IS, Wagle SA, Rosser A, Hodges JR.
Psychiatric symptoms in neurologically asymptomatic Huntington’s
disease gene carriers: a comparison with gene negative at risk subjects.
7 Shiwach RS, Norbury CG. A controlled psychiatric study of individuals
8 Broadstock M, Miche S, Marteau T. Psychological consequences of
predictive genetic testing: a systematic review. Eur J Hum Genet
2000;8:731-8.
9 Meiser B, Dunn S. Psychological impact of genetic testing for
Huntington’s disease: an update of the literature. J Neurol
Neurosurg Psychiatry 2000;69:574-78.
10 Blackmore L, Simpson SA, Crawford JR. Cognitive performance in UK
sample of presymptomatic people carrying the gene for Huntington’s
11 Compadonico JR, Codori AM, Brandt J. Neuropsychological stability
over two years in asymptomatic carriers of the Huntington’s disease
12 de Boo G, Tibben A, Hermans J, Jennekens-Schenkel A, Lanser JKB,
Maat-Kievit A, Roos RAC. Memory and learning are impaired in
13 de Boo GM, Tibben A, Lanser JB, Jennekens-Schenkel A, Hermans J,
Maat-Kievit A, Roos RA. Early cognitive and motor symptoms in identified
carriers of the gene for Huntington disease. Arch Neurol
14 de Boo GM, Tibben A, Lanser JB, Jennekens-Schenkel A, Hermans J,
Veget-van der Vlis M, Roos RA. Intelligence indices in people with a
high/low risk for developing Huntington’s disease. J Med Genet
1997;34:564-8.
15 Diamond R, White RF, Myers RH, Mastromarco C, Karoshets WJ,
Butters N, Rohstein DM, Mass MB, Vasterling J. Evidence of
presymptomatic cognitive decline in Huntington’s disease. J Clin Exp
16 Foroud T, Siemens E, Kleindorfer D, Bill DJ, Hodoe ME, Norton JA,
Connelly PM, Christian JC. Cognitive scores in carriers of Huntington’s
17 Giordani B, Berent S, Boivin MJ, Penney JB, Lehtinen S, Markel DS,
Hollingsworth Z, Butterbaugh G, Hichwa RD, Gusella JF. Longitudinal
neuropysychological and genetic linkage analysis of persons at risk for
processing disorders in patients with Huntington’s disease and
19 Gray JM, Young AW, Barker WA, Curtis A, Gibson D. Impaired
recognition of disgust in Huntington’s disease gene carriers. Brain
1997;120:2029-38.
Y, Brice A, Dubois B. Are cognitive changes the first symptoms of
Huntington’s disease? A study of gene carriers. J Neurol

www.jmedgenet.com

40 Dudok de Wit AC. To know or not to know. The psychological implications of presymptomatic DNA testing for autosomal dominant inheritable late onset disorders. Thesis, Erasmus University, Rotterdam, The Netherlands, 1997.

Behavioural complaints in participants who underwent predictive testing for Huntington's disease

M-N W Witjes-Ané, A H Zwinderman, A Tibben, G-J B van Ommen and R A C Roos

doi: 10.1136/jmg.39.11.857

Updated information and services can be found at:
http://jmg.bmj.com/content/39/11/857

References

These include:
This article cites 41 articles, 12 of which you can access for free at:
http://jmg.bmj.com/content/39/11/857#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections
Dementia (34)
Memory disorders (psychiatry) (67)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/