MET mutation and familial gastric cancer

J D Chen, S Kearns, T Porter, F M Richards, E R Maher, B T Teh

Methods

To examine these patients for germline **MET** gene mutations within the juxtamembrane and tyrosine kinase domains, polymerase chain reaction (PCR) was carried out in exons 14 and 16 to 21 in a 50 µl reaction volume containing 50 ng DNA, 20 mmol/l Tris-HCl (pH 8.4), 50 mmol/l KCl, 1.5 mmol/l MgCl₂, 0.2 µmol/l each primer, 0.2 mmol/l dATP, dGTP, dCTP, dTTP each, and two units of Taq DNA polymerase (GIBCO-BRL, Life Technologies). Amplification was carried out in a programmable thermal cycler (GeneAmp PCR system 9700, Perkin-Elmer) at the following settings: after a denaturation at 94°C for five minutes, samples were amplified for 35 cycles at 94°C for 30 seconds, 55-58°C for 30 seconds, and 72°C for 45 seconds, with a final extension at 72°C for 10 minutes. After amplification, all the PCR products were subjected to purification using Microcon YM-100 column (Amicon, Millipore) and direct sequencing using ABI PRISM BigDye Terminator cycle sequencing ready reaction kit (PE Applied Biosystems).

Results

We did not find any **MET** mutation in the juxtamembrane or tyrosine kinase domains in a large series of familial gastric cancer cases, suggesting that **MET** gene mutations are an infrequent cause of gastric cancer susceptibility in the sample studied. To date, germline **CDH1** mutations have only been described in familial diffuse gastric cancer. The **MET** gene mutation (P1009S), reported by Lee et al,™ was found in a Korean patient with intestinal gastric cancer (J-H Lee, personal communication); it is possible that this mutation may be ethnic specific and not found in other populations (16 of our cases were white and two were from the Indian subcontinent). The mutation may also be specific to intestinal type of gastric cancer rather than the diffuse type, which was found in 5/6 of our families in which the histology was available.

Conclusion

In conclusion, our findings suggest that further investigations are required to identify susceptibility genes that account for the majority of **E-cadherin** negative gastric cancer families.

MET mutation and familial gastric cancer

J D Chen, S Kearns, T Porter, F M Richards, E R Maher and B T Teh

J Med Genet 2001 38: e26
doi: 10.1136/jmg.38.8.e26

Updated information and services can be found at:
http://jmg.bmj.com/content/38/8/e26

These include:

References
This article cites 8 articles, 5 of which you can access for free at:
http://jmg.bmj.com/content/38/8/e26#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Paediatric oncology (126)
- Screening (oncology) (234)
- Breast cancer (239)
- Colon cancer (131)
- Hepatic cancer (7)
- Molecular genetics (1254)
- Pancreas and biliary tract (110)
- Dermatology (240)
- Epidemiology (630)
- Urological cancer (70)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/